线性回归和自动求导

设$F \in \mathbb{R}^{S \times F}$为特征矩阵,我想使用带有自动求导的逻辑回归对其进行分类[1]。我使用的代码与下面的示例类似[2]。

我唯一想要改变的是,我有一个额外的权重矩阵$W$在$\mathbb{R}^{F \times L}$中,我想将其应用于每个特征。因此,每个特征都会与$W$相乘,然后输入到逻辑回归中。

是否可以使用自动求导同时训练$W$和逻辑回归的权重?

我尝试了以下代码,但不幸的是权重保持在0值。

import autograd.numpy as npfrom autograd import grad    global inputs    def sigmoid(x):        return 0.5 * (np.tanh(x) + 1)    def logistic_predictions(weights, inputs):        # Outputs probability of a label being true according to logistic model.        return sigmoid(np.dot(inputs, weights))    def training_loss(weights):        global inputs        # Training loss is the negative log-likelihood of the training labels.        feature_weights = weights[3:]        feature_weights = np.reshape(feature_weights, (3, 3))        inputs = np.dot(inputs, feature_weights)        preds = logistic_predictions(weights[0:3], inputs)        label_probabilities = preds * targets + (1 - preds) * (1 - targets)        return -np.sum(np.log(label_probabilities))    # Build a toy dataset.    inputs = np.array([[0.52, 1.12, 0.77],                       [0.88, -1.08, 0.15],                       [0.52, 0.06, -1.30],                       [0.74, -2.49, 1.39]])    targets = np.array([True, True, False, True])    # Define a function that returns gradients of training loss using autograd.    training_gradient_fun = grad(training_loss)    # Optimize weights using gradient descent.    weights = np.zeros([3 + 3 * 3])    print "Initial loss:", training_loss(weights)    for i in xrange(100):        print(i)        print(weights)        weights -= training_gradient_fun(weights) * 0.01    print  "Trained loss:", training_loss(weights)

[1] https://github.com/HIPS/autograd

[2] https://github.com/HIPS/autograd/blob/master/examples/logistic_regression.py


回答:

常见的做法是将所有“向量化”的参数连接成决策变量向量。

如果您更新logistic_predictions以包括W矩阵,像这样

def logistic_predictions(weights_and_W, inputs):    '''    Here, :arg weights_and_W: is an array of the form [weights W.ravel()]    '''    # Outputs probability of a label being true according to logistic model.    weights = weights_and_W[:inputs.shape[1]]    W_raveled = weights_and_W[inputs.shape[1]:]    n_W = len(W_raveled)    W = W_raveled.reshape(inputs.shape[1], n_W/inputs.shape[1])    return sigmoid(np.dot(np.dot(inputs, W), weights))

然后只需将traning_loss更改为(来自原始源示例)

def training_loss(weights_and_W):    # Training loss is the negative log-likelihood of the training labels.    preds = logistic_predictions(weights_and_W, inputs)    label_probabilities = preds * targets + (1 - preds) * (1 - targets)    return -np.sum(np.log(label_probabilities))

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注