我目前有一个形状为 (1631160,78)
的 numpy 数组作为神经网络的输入。我想尝试使用 LSTM,这需要一个三维结构作为输入数据。我现在使用以下代码来生成所需的三维结构,但速度非常慢(预计时间超过一天)。有没有更好的方法用 numpy 来做这件事?
我当前生成数据的代码如下:
def transform_for_rnn(input_x, input_y, window_size):
output_x = None
start_t = time.time()
for i in range(len(input_x)):
if i > 100 and i % 100 == 0:
sys.stdout.write('\rTransform Data: %d/%d\tETA:%s'%(i, len(input_x), str(datetime.timedelta(seconds=(time.time()-start_t)/i * (len(input_x) - i)))))
sys.stdout.flush()
if output_x is None:
output_x = np.array([input_x[i:i+window_size, :]])
else:
tmp = np.array([input_x[i:i+window_size, :]])
output_x = np.concatenate((output_x, tmp))
print
output_y = input_y[window_size:]
assert len(output_x) == len(output_y)
return output_x, output_y
回答:
这里介绍一种使用 NumPy strides
来向量化创建 output_x
的方法 –
nrows = input_x.shape[0] - window_size + 1
p,q = input_x.shape
m,n = input_x.strides
strided = np.lib.stride_tricks.as_strided
out = strided(input_x, shape=(nrows,window_size,q), strides=(m,m,n))
示例运行 –
In [83]: input_x
Out[83]: array([[ 0.73089384, 0.98555845, 0.59818726],
[ 0.08763718, 0.30853945, 0.77390923],
[ 0.88835985, 0.90506367, 0.06204614],
[ 0.21791334, 0.77523643, 0.47313278],
[ 0.93324799, 0.61507976, 0.40587073],
[ 0.49462016, 0.00400835, 0.66401908]])
In [84]: window_size = 4
In [85]: out
Out[85]: array([[[ 0.73089384, 0.98555845, 0.59818726],
[ 0.08763718, 0.30853945, 0.77390923],
[ 0.88835985, 0.90506367, 0.06204614],
[ 0.21791334, 0.77523643, 0.47313278]],
[[ 0.08763718, 0.30853945, 0.77390923],
[ 0.88835985, 0.90506367, 0.06204614],
[ 0.21791334, 0.77523643, 0.47313278],
[ 0.93324799, 0.61507976, 0.40587073]],
[[ 0.88835985, 0.90506367, 0.06204614],
[ 0.21791334, 0.77523643, 0.47313278],
[ 0.93324799, 0.61507976, 0.40587073],
[ 0.49462016, 0.00400835, 0.66401908]]])
这种方法创建了一个输入数组的视图,因此在内存使用上是高效的。在大多数情况下,这也应该会带来性能上的好处。让我们验证一下这确实是一个视图 –
In [86]: np.may_share_memory(out,input_x)
Out[86]: True # 不保证,但大多数情况下是足够的
另一种确定无疑的方法是将一些值设置到 output
中,然后检查输入 –
In [87]: out[0] = 0
In [88]: input_x
Out[88]: array([[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0.93324799, 0.61507976, 0.40587073],
[ 0.49462016, 0.00400835, 0.66401908]])