如何降低caffe训练输出中的详细程度?

我已经使用Debug标志编译了caffe。现在当我运行

./examples/mnist/train_lenet.sh

我得到的输出是

I0112 22:50:49.680357 114020 data_layer.cpp:103]      Read time: 0.095 ms.I0112 22:50:49.680376 114020 data_layer.cpp:104] Transform time: 0.821 ms.I0112 22:50:49.681077 113921 solver.cpp:409]     Test net output #0: accuracy = 0.9902I0112 22:50:49.681115 113921 solver.cpp:409]     Test net output #1: loss = 0.0292544 (* 1 = 0.0292544 loss)I0112 22:50:49.681125 113921 solver.cpp:326] Optimization Done.I0112 22:50:49.681133 113921 caffe.cpp:215] Optimization Done.I0112 22:50:49.681915 114020 data_layer.cpp:102] Prefetch batch: 1 ms.I0112 22:50:49.681929 114020 data_layer.cpp:103]      Read time: 0.095 ms.I0112 22:50:49.681948 114020 data_layer.cpp:104] Transform time: 0.829 ms.

http://pastebin.com/cbXTH5HH

我希望输出中没有读取时间和预取时间。并且不需要重新编译。

I1130 00:30:48.030009  5007 solver.cpp:590] Iteration 9900, lr = 0.00596843I1130 00:30:49.105876  5007 solver.cpp:468] Snapshotting to binary proto file examples/mnist/lenet_iter_10000.caffemodelI1130 00:30:49.117113  5007 solver.cpp:753] Snapshotting solver state to binary proto file examples/mnist/lenet_iter_10000.solverstateI1130 00:30:49.125869  5007 solver.cpp:327] Iteration 10000, loss = 0.00332428I1130 00:30:49.125888  5007 solver.cpp:347] Iteration 10000, Testing net (#0)I1130 00:30:49.722595  5007 solver.cpp:415]     Test net output #0: accuracy = 0.9905I1130 00:30:49.722626  5007 solver.cpp:415]     Test net output #1: loss = 0.0302176 (* 1 = 0.0302176 loss)I1130 00:30:49.722642  5007 solver.cpp:332] Optimization Done.I1130 00:30:49.722647  5007 caffe.cpp:215] Optimization Done.

例如:-http://pastebin.com/F5c3Yutu


回答:

你可以试试

./examples/mnist/train_lenet.sh | grep -v "Read time:" | grep -v "Prefetch batch:"

这样我得到的输出是

I0112 22:50:49.671303 114020 data_layer.cpp:104] Transform time: 0.791 ms.I0112 22:50:49.672757 114020 data_layer.cpp:104] Transform time: 0.767 ms.I0112 22:50:49.674334 114020 data_layer.cpp:104] Transform time: 0.836 ms.I0112 22:50:49.675853 114020 data_layer.cpp:104] Transform time: 0.806 ms.I0112 22:50:49.677273 114020 data_layer.cpp:104] Transform time: 0.762 ms.I0112 22:50:49.678861 114020 data_layer.cpp:104] Transform time: 0.861 ms.I0112 22:50:49.680376 114020 data_layer.cpp:104] Transform time: 0.821 ms.I0112 22:50:49.681077 113921 solver.cpp:409]     Test net output #0: accuracy = 0.9902I0112 22:50:49.681115 113921 solver.cpp:409]     Test net output #1: loss = 0.0292544 (* 1 = 0.0292544 loss)I0112 22:50:49.681125 113921 solver.cpp:326] Optimization Done.I0112 22:50:49.681133 113921 caffe.cpp:215] Optimization Done.I0112 22:50:49.681948 114020 data_layer.cpp:104] Transform time: 0.829 ms.

从你的样本输入中得到的。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注