如何降低caffe训练输出中的详细程度?

我已经使用Debug标志编译了caffe。现在当我运行

./examples/mnist/train_lenet.sh

我得到的输出是

I0112 22:50:49.680357 114020 data_layer.cpp:103]      Read time: 0.095 ms.I0112 22:50:49.680376 114020 data_layer.cpp:104] Transform time: 0.821 ms.I0112 22:50:49.681077 113921 solver.cpp:409]     Test net output #0: accuracy = 0.9902I0112 22:50:49.681115 113921 solver.cpp:409]     Test net output #1: loss = 0.0292544 (* 1 = 0.0292544 loss)I0112 22:50:49.681125 113921 solver.cpp:326] Optimization Done.I0112 22:50:49.681133 113921 caffe.cpp:215] Optimization Done.I0112 22:50:49.681915 114020 data_layer.cpp:102] Prefetch batch: 1 ms.I0112 22:50:49.681929 114020 data_layer.cpp:103]      Read time: 0.095 ms.I0112 22:50:49.681948 114020 data_layer.cpp:104] Transform time: 0.829 ms.

http://pastebin.com/cbXTH5HH

我希望输出中没有读取时间和预取时间。并且不需要重新编译。

I1130 00:30:48.030009  5007 solver.cpp:590] Iteration 9900, lr = 0.00596843I1130 00:30:49.105876  5007 solver.cpp:468] Snapshotting to binary proto file examples/mnist/lenet_iter_10000.caffemodelI1130 00:30:49.117113  5007 solver.cpp:753] Snapshotting solver state to binary proto file examples/mnist/lenet_iter_10000.solverstateI1130 00:30:49.125869  5007 solver.cpp:327] Iteration 10000, loss = 0.00332428I1130 00:30:49.125888  5007 solver.cpp:347] Iteration 10000, Testing net (#0)I1130 00:30:49.722595  5007 solver.cpp:415]     Test net output #0: accuracy = 0.9905I1130 00:30:49.722626  5007 solver.cpp:415]     Test net output #1: loss = 0.0302176 (* 1 = 0.0302176 loss)I1130 00:30:49.722642  5007 solver.cpp:332] Optimization Done.I1130 00:30:49.722647  5007 caffe.cpp:215] Optimization Done.

例如:-http://pastebin.com/F5c3Yutu


回答:

你可以试试

./examples/mnist/train_lenet.sh | grep -v "Read time:" | grep -v "Prefetch batch:"

这样我得到的输出是

I0112 22:50:49.671303 114020 data_layer.cpp:104] Transform time: 0.791 ms.I0112 22:50:49.672757 114020 data_layer.cpp:104] Transform time: 0.767 ms.I0112 22:50:49.674334 114020 data_layer.cpp:104] Transform time: 0.836 ms.I0112 22:50:49.675853 114020 data_layer.cpp:104] Transform time: 0.806 ms.I0112 22:50:49.677273 114020 data_layer.cpp:104] Transform time: 0.762 ms.I0112 22:50:49.678861 114020 data_layer.cpp:104] Transform time: 0.861 ms.I0112 22:50:49.680376 114020 data_layer.cpp:104] Transform time: 0.821 ms.I0112 22:50:49.681077 113921 solver.cpp:409]     Test net output #0: accuracy = 0.9902I0112 22:50:49.681115 113921 solver.cpp:409]     Test net output #1: loss = 0.0292544 (* 1 = 0.0292544 loss)I0112 22:50:49.681125 113921 solver.cpp:326] Optimization Done.I0112 22:50:49.681133 113921 caffe.cpp:215] Optimization Done.I0112 22:50:49.681948 114020 data_layer.cpp:104] Transform time: 0.829 ms.

从你的样本输入中得到的。

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注