我正在学习这个很棒的教程,关于如何使用Keras创建图像分类器。一旦我训练好模型,我会将其保存到文件中,然后在下面的测试脚本中重新加载到模型中。
当我使用一张新的、从未见过的图像来评估模型时,我得到了以下异常:
错误:
Traceback (most recent call last): File "test_classifier.py", line 48, in <module> score = model.evaluate(x, y, batch_size=16) File "/Library/Python/2.7/site-packages/keras/models.py", line 655, in evaluate sample_weight=sample_weight) File "/Library/Python/2.7/site-packages/keras/engine/training.py", line 1131, in evaluate batch_size=batch_size) File "/Library/Python/2.7/site-packages/keras/engine/training.py", line 959, in _standardize_user_dataexception_prefix='model input') File "/Library/Python/2.7/site-packages/keras/engine/training.py", line 108, in standardize_input_datastr(array.shape))Exception: Error when checking model input: expected convolution2d_input_1 to have shape (None, 3, 150, 150) but got array with shape (1, 3, 150, 198)`
问题出在我训练的模型上,还是我调用evaluate方法的方式上?
代码:
from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Convolution2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img import numpy as np img_width, img_height = 150, 150 train_data_dir = 'data/train' validation_data_dir = 'data/validation' nb_train_samples = 2000 nb_validation_samples = 800 nb_epoch = 5 model = Sequential() model.add(Convolution2D(32, 3, 3, input_shape=(3, img_width, img_height))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(32, 3, 3)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(64, 3, 3)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(1)) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) model.load_weights('first_try.h5') img = load_img('data/test2/ferrari.jpeg') x = img_to_array(img) # this is a Numpy array with shape (3, 150, 150) x = x.reshape( (1,) + x.shape ) # this is a Numpy array with shape (1, 3, 150, 150) y = np.array([0]) score = model.evaluate(x, y, batch_size=16)`
回答:
问题有两个方面:
-
测试图像的尺寸不对。它是150 x 198,需要调整为150 x 150。
-
我需要将密集层从
model.add(Dense(10))
更改为model.add(Dense(1))
。
我还不明白如何让模型给我预测结果,但至少现在,模型评估可以运行了。