通过查看一些Flux
的示例,我拼凑了一个逻辑回归预测器。然而,在评估梯度时,我得到了一个错误,不支持修改数组
。我尝试让loss
和predict
更加简洁,甚至尝试将loss和predict合并成一行。
如何获取这个预测器的梯度?
错误:
不支持修改数组Stacktrace: [1] error(::String) at ./error.jl:33 [2] (::Zygote.var"#459#460")(::Nothing) at /Users/john/.julia/packages/Zygote/pmW1K/src/lib/array.jl:67 [3] (::Zygote.var"#1009#back#461"{Zygote.var"#459#460"})(::Nothing) at /Users/john/.julia/packages/ZygoteRules/OjfTt/src/adjoint.jl:59 [4] _typed_hcat at ./abstractarray.jl:1335 [inlined] [5] (::typeof(∂(_typed_hcat)))(::Array{Float64,2}) at /Users/john/.julia/packages/Zygote/pmW1K/src/compiler/interface2.jl:0 [6] reduce at ./abstractarray.jl:1377 [inlined] [7] (::typeof(∂(reduce)))(::Array{Float64,2}) at /Users/john/.julia/packages/Zygote/pmW1K/src/compiler/interface2.jl:0 [8] predict at ./In[9]:2 [inlined] [9] (::typeof(∂(predict)))(::LinearAlgebra.Adjoint{Float64,Array{Float64,2}}) at /Users/john/.julia/packages/Zygote/pmW1K/src/compiler/interface2.jl:0 [10] loss at ./In[10]:2 [inlined] [11] (::typeof(∂(loss)))(::Float64) at /Users/john/.julia/packages/Zygote/pmW1K/src/compiler/interface2.jl:0 [12] #9 at ./In[11]:1 [inlined] [13] (::typeof(∂(#9)))(::Float64) at /Users/john/.julia/packages/Zygote/pmW1K/src/compiler/interface2.jl:0 [14] (::Zygote.var"#50#51"{Zygote.Params,Zygote.Context,typeof(∂(#9))})(::Float64) at /Users/john/.julia/packages/Zygote/pmW1K/src/compiler/interface.jl:177 [15] gradient(::Function, ::Zygote.Params) at /Users/john/.julia/packages/Zygote/pmW1K/src/compiler/interface.jl:54 [16] top-level scope at In[11]:1
代码:
import Fluximport Flux.NNlibimport Zygoteimport Parametersnsamples = 4nfeats = 5nlabels = 3X = rand(nsamples,nfeats)Y = rand(nsamples,nlabels)W = rand(nlabels,nfeats)b = rand(nlabels)function predict(x) return NNlib.σ.( reduce(hcat,(map(i -> (x[i,:]'*W')' + b,1:nsamples))) ) endfunction loss(x,y) yhat = predict(x)' return sum((y - yhat).^2)endgs = Flux.gradient(() -> loss(X,Y), Flux.params(W,b))
更短的损失函数(得到相同的错误):
function lossShort(x,y) return sum((y - NNlib.σ.( reduce(hcat,(map(i -> (x[i,:]'*W')' + b,1:nsamples))) )' ).^2)endgs = Flux.gradient(() -> lossShort(X,Y), Flux.params(W,b))
回答:
这种错误通常会在你有一个可以使用参数更改的数组,或者在梯度代码中有一个函数返回的数组时出现。*请注意,当我遇到这些错误时,我仍在使用Julia 1.5.3*
我不确定你使用的是Flux/Zygote的哪个版本,但你的代码在我使用1.6版本时运行正常
(@v1.6) pkg> status Zygote Status `~\.julia\environments\v1.6\Project.toml` [e88e6eb3] Zygote v0.6.10(@v1.6) pkg> status Flux Status `~\.julia\environments\v1.6\Project.toml` [587475ba] Flux v0.12.2