在尝试为我的自定义模型生成Grad-CAM时,我遇到了一个问题。我正在尝试使用resnet50对图像分类模型进行微调。我的模型是这样定义的:
IMG_SHAPE = (img_height,img_width) + (3,)base_model = tf.keras.applications.ResNet50(input_shape=IMG_SHAPE, include_top=False, weights='imagenet')
然后,
preprocess_input = tf.keras.applications.resnet50.preprocess_input
最后,
input_layer = tf.keras.Input(shape=(img_height, img_width, 3),name="input_layer")x = preprocess_input(input_layer)x = base_model(x, training=False)x = tf.keras.layers.GlobalAveragePooling2D(name="global_average_layer")(x)x = tf.keras.layers.Dropout(0.2,name="dropout_layer")(x)x = tf.keras.layers.Dense(4,name="training_layer")(x)outputs = tf.keras.layers.Dense(4,name="prediction_layer")(x)model = tf.keras.Model(input_layer, outputs)
现在,我按照https://keras.io/examples/vision/grad_cam/上的教程来生成热力图。但是,尽管教程建议使用model.summary()来获取最后的卷积层和分类层,我不确定如何在我的模型中实现。如果我运行model.summary(),我得到的是:
__________________________________________________________________________________________________Layer (type) Output Shape Param # Connected to ==================================================================================================input_layer (InputLayer) [(None, 224, 224, 3)] 0 __________________________________________________________________________________________________tf.operators.getitem_11 (None, 224, 224, 3) 0 __________________________________________________________________________________________________tf.nn.bias_add_11 (TFOpLambd [(None, 224, 224, 3)] 0__________________________________________________________________________________________________resnet50 (Functional) (None, 7, 7, 2048) 23587712__________________________________________________________________________________________________global_average (GlobalAverag (None, 2048) 0__________________________________________________________________________________________________dropout_layer (Dropout) (None, 2048) 0__________________________________________________________________________________________________hidden_layer (Dense) (None, 4) 8196__________________________________________________________________________________________________predict_layer (Dense) (None, 4) 20==================================================================================================
然而,如果我运行base_model.summary(),我得到的是:
Layer (type) Output Shape Param # Connected to ==================================================================================================input_29 (InputLayer) [(None, 224, 224, 3) 0 __________________________________________________________________________________________________conv1_pad (ZeroPadding2D) (None, 230, 230, 3) 0 input_29[0][0] __________________________________________________________________________________________________conv1_conv (Conv2D) (None, 112, 112, 64) 9472 conv1_pad[0][0] __________________________________________________________________________________________________conv1_bn (BatchNormalization) (None, 112, 112, 64) 256 conv1_conv[0][0] __________________________________________________________________________________________________... ... ... ... __________________________________________________________________________________________________conv5_block3_3_bn (BatchNormali (None, 7, 7, 2048) 8192 conv5_block3_3_conv[0][0] __________________________________________________________________________________________________conv5_block3_add (Add) (None, 7, 7, 2048) 0 conv5_block2_out[0][0] conv5_block3_3_bn[0][0] __________________________________________________________________________________________________conv5_block3_out (Activation) (None, 7, 7, 2048) 0 conv5_block3_add[0][0] ==================================================================================================
如果我按照教程使用’resnet50’作为最后的卷积层,我会得到以下错误:
图形断开连接:无法获取层“conv1_pad”处张量KerasTensor(type_spec=TensorSpec(shape=(None, 224, 224, 3), dtype=tf.float32, name=’input_29′), name=’input_29′, description=”created by layer ‘input_29′”)的值。之前访问的层没有问题:[]
但是,如果我使用’conv5_block3_out’,程序无法在模型中找到该层。我该如何访问似乎隐藏在resnet50层中的层呢?
回答:
我设法找到了解决这个问题的方法。在定义“make-gradcam_heatmap”时,我添加了以下一行代码
input_layer = model.get_layer('resnet50').get_layer('input_1').input
并将下一行改为
last_conv_layer = model.get_layer(last_conv_layer_name).get_layer("conv5_block3_out")