我已经在sklearn的SGDClassifier和LogisticRegression上做了很多工作。现在我遇到一个问题,需要:1-处理稀疏矩阵(sklearn支持这一点)2-处理多标签实例,其中每个实例的标签是一个覆盖所有标签的概率分布,而不是0/1指示器。
例如,样本1的标签可能是:
0.1 0.0 0.4 0.5
这意味着对于4个标签,我们有一个概率分布,我不应该使用阈值将其转换为0/1。
有人知道如何修改sklearn的线性模型来实现这一点吗?或者有没有其他库支持多输出实例?
注意:我在lasagne/theano中实现了多输出逻辑回归,但它不接受稀疏矩阵,并且与sklearn相比速度非常慢。
回答:
更新2: 似乎将mini批次的大小从20增加到1000可以大大加快优化速度。所以我想我会坚持这个解决方案。
更新1: 以下解决方案非常慢:
一个解决方案:
最终我使用Lasagne实现了一个逻辑回归模型,该模型接受稀疏矩阵作为输入,并支持多输出实例(例如,标签上的概率分布)作为目标值。代码如下。我直接将两个类从lasagne.layers.sparse复制到我的代码中,如果你的lasagne是更新版本,则不需要这样做。
主要思想是,应该使用对应的类SparseInputDenseLayer和SparseInputDropoutLayer来代替每个DenseLayer和DropoutLayer。请注意,输入层保持不变,这一点让我感到困惑。我期望输入层会有所变化,但因为所有与输入层相关的计算都发生在下一层(无论是隐藏层还是输出层),所以第二级层会发生如前所述的变化。
请注意,逻辑回归可以通过添加一个或多个密集层轻松转换为MLP。
请注意,唯一改变的层是输入层之后的层,其他层不会改变。
我还尝试了gmlnet(python包装器)和sklearn的MLPClassifier,但据我所知,它们只支持1d目标标签或1/0多输出标签,并且不接受标签概率分布作为目标。
'''Created on 22 Apr 2016@author: af'''import pdbimport numpy as npimport sysfrom os import pathimport scipy as spimport theanoimport theano.tensor as Timport lasagnefrom lasagne.regularization import regularize_layer_params_weighted, l2, l1from lasagne.regularization import regularize_layer_paramsimport theano.sparse as Sfrom lasagne.layers import DenseLayer, DropoutLayersys.path.append(path.abspath('../geolocation'))import paramsimport geolocateimport logginglogging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)class SparseInputDenseLayer(DenseLayer): def get_output_for(self, input, **kwargs): if not isinstance(input, (S.SparseVariable, S.SparseConstant, S.sharedvar.SparseTensorSharedVariable)): raise ValueError("Input for this layer must be sparse") activation = S.dot(input, self.W) if self.b is not None: activation = activation + self.b.dimshuffle('x', 0) return self.nonlinearity(activation)class SparseInputDropoutLayer(DropoutLayer): def get_output_for(self, input, deterministic=False, **kwargs): if not isinstance(input, (S.SparseVariable, S.SparseConstant, S.sharedvar.SparseTensorSharedVariable)): raise ValueError("Input for this layer must be sparse") if deterministic or self.p == 0: return input else: # Using Theano constant to prevent upcasting one = T.constant(1, name='one') retain_prob = one - self.p if self.rescale: input = S.mul(input, one/retain_prob) input_shape = self.input_shape if any(s is None for s in input_shape): input_shape = input.shape return input * self._srng.binomial(input_shape, p=retain_prob, dtype=input.dtype)def load_data(): from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer #categories = ['alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space'] categories = None #remove = ('headers', 'footers', 'quotes') remove = () train_set = fetch_20newsgroups(subset='train', remove=remove, categories=categories) test_set = fetch_20newsgroups(subset='test', remove=remove, categories=categories) Y_train, Y_test = train_set.target, test_set.target vectorizer = TfidfVectorizer(min_df=2, stop_words='english') X_train = vectorizer.fit_transform(train_set.data) X_test = vectorizer.transform(test_set.data) return X_train, Y_train, X_test, Y_testdef load_geolocation_data(mindf=10, complete_prob=True): geolocate.initialize(granularity=params.BUCKET_SIZE, write=False, readText=True, reload_init=False, regression=params.do_not_discretize) params.X_train, params.Y_train, params.U_train, params.X_dev, params.Y_dev, params.U_dev, params.X_test, params.Y_test, params.U_test, params.categories, params.feature_names = geolocate.feature_extractor(norm=params.norm, use_mention_dictionary=False, min_df=mindf, max_df=0.2, stop_words='english', binary=True, sublinear_tf=False, vocab=None, use_idf=True, save_vectorizer=False) if complete_prob: Y_train = np.zeros((params.X_train.shape[0], len(params.categories)), dtype='int32') Y_dev = np.zeros((params.X_dev.shape[0], len(params.categories)), dtype='int32') for i in range(params.Y_dev.shape[0]): Y_dev[i, params.Y_dev[i]] = 1 for i in range(params.Y_train.shape[0]): Y_train[i, params.Y_train[i]] = 1 return params.X_train, Y_train, params.X_dev, Y_dev else: return params.X_train, params.Y_train, params.X_dev, params.Y_dev# ############################# Batch iterator ################################ This is just a simple helper function iterating over training data in# mini-batches of a particular size, optionally in random order. It assumes# data is available as numpy arrays. For big datasets, you could load numpy# arrays as memory-mapped files (np.load(..., mmap_mode='r')), or write your# own custom data iteration function. For small datasets, you can also copy# them to GPU at once for slightly improved performance. This would involve# several changes in the main program, though, and is not demonstrated here.def iterate_minibatches(inputs, targets, batchsize, shuffle=False): assert inputs.shape[0] == targets.shape[0] if shuffle: indices = np.arange(inputs.shape[0]) np.random.shuffle(indices) for start_idx in range(0, inputs.shape[0] - batchsize + 1, batchsize): if shuffle: excerpt = indices[start_idx:start_idx + batchsize] else: excerpt = slice(start_idx, start_idx + batchsize) yield inputs[excerpt], targets[excerpt]def nn_model(X_train, Y_train, X_test, Y_test, n_epochs=20, batch_size=50, init_parameters=None, complete_prob=True, add_hidden=False, regul_coef=5e-5): logging.info('building the network...') in_size = X_train.shape[1] if complete_prob: out_size = Y_train.shape[1] else: out_size = len(set(Y_train.tolist())) # Prepare Theano variables for inputs and targets if not sp.sparse.issparse(X_train): X_sym = T.matrix() else: X_sym = S.csr_matrix(name='inputs', dtype='float32') if complete_prob: y_sym = T.matrix() else: y_sym = T.ivector() l_in = lasagne.layers.InputLayer(shape=(None, in_size), input_var=X_sym) drop_input = False if drop_input: l_in = lasagne.layers.dropout(l_in, p=0.2) if add_hidden: if not sp.sparse.issparse(X_train): l_hid1 = lasagne.layers.DenseLayer( l_in, num_units=300, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform()) else: l_hid1 = SparseInputDenseLayer( l_in, num_units=300, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform()) l_out = lasagne.layers.DenseLayer( l_hid1, num_units=out_size, nonlinearity=lasagne.nonlinearities.softmax) else: if not sp.sparse.issparse(X_train): l_out = lasagne.layers.DenseLayer( l_in, num_units=out_size, nonlinearity=lasagne.nonlinearities.softmax) else: l_out = SparseInputDenseLayer( l_in, num_units=out_size, nonlinearity=lasagne.nonlinearities.softmax) if add_hidden: embedding = lasagne.layers.get_output(l_hid1, X_sym) f_get_embeddings = theano.function([X_sym], embedding) output = lasagne.layers.get_output(l_out, X_sym) pred = output.argmax(-1) loss = lasagne.objectives.categorical_crossentropy(output, y_sym) #loss = lasagne.objectives.multiclass_hinge_loss(output, y_sym) l1_share = 0.9 l1_penalty = lasagne.regularization.regularize_layer_params(l_out, l1) * regul_coef * l1_share l2_penalty = lasagne.regularization.regularize_layer_params(l_out, l2) * regul_coef * (1-l1_share) loss = loss + l1_penalty + l2_penalty loss = loss.mean() if complete_prob: y_sym_one_hot = y_sym.argmax(-1) acc = T.mean(T.eq(pred, y_sym_one_hot)) else: acc = T.mean(T.eq(pred, y_sym)) if init_parameters: lasagne.layers.set_all_param_values(l_out, init_parameters) parameters = lasagne.layers.get_all_params(l_out, trainable=True) #print(params) #updates = lasagne.updates.nesterov_momentum(loss, parameters, learning_rate=0.01, momentum=0.9) #updates = lasagne.updates.sgd(loss, parameters, learning_rate=0.01) #updates = lasagne.updates.adagrad(loss, parameters, learning_rate=0.1, epsilon=1e-6) #updates = lasagne.updates.adadelta(loss, parameters, learning_rate=0.1, rho=0.95, epsilon=1e-6) updates = lasagne.updates.adam(loss, parameters, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8) f_train = theano.function([X_sym, y_sym], [loss, acc], updates=updates) f_val = theano.function([X_sym, y_sym], [loss, acc]) f_predict = theano.function([X_sym], pred) f_predict_proba = theano.function([X_sym], output) do_scale = False #X_train = X_train.todense() #X_text = X_text.todense() if do_scale: from sklearn import preprocessing scaler = preprocessing.StandardScaler().fit(X_train) X_train = scaler.transform(X_train) X_text = scaler.transform(X_text) #X = X_train.todense().astype(theano.config.floatX) #Xt = X_test.todense().astype(theano.config.floatX) X = X_train.astype('float32') Xt = X_test.astype('float32') #X = X_train.astype(theano.config.floatX) #Xt = X_test.astype(theano.config.floatX) if complete_prob: Y = Y_train.astype('float32') Yt = Y_test.astype('float32') else: Y = Y_train.astype('int32') Yt = Y_test.astype('int32') logging.info('training (n_epochs, batch_size) = (' + str(n_epochs) + ', ' + str(batch_size) + ')' ) for n in xrange(n_epochs): for batch in iterate_minibatches(X, Y, batch_size, shuffle=True): x_batch, y_batch = batch l_train, acc_train = f_train(x_batch, y_batch) l_val, acc_val = f_val(Xt, Yt) logging.info('epoch ' + str(n) + ' ,train_loss ' + str(l_train) + ' ,acc ' + str(acc_train) + ' ,val_loss ' + str(l_val) + ' ,acc ' + str(acc_val)) geolocate.loss(f_predict(Xt), U_eval=params.U_dev ) logging.info( str(regul_coef)) if add_hidden: X_embs = f_get_embeddings(X) Xt_embs = f_get_embeddings(Xt) train_probs = f_predict_proba(X) return train_probs #pdb.set_trace()if __name__ == '__main__': #X_train, Y_train, X_test, Y_test = load_data() X_train, Y_train, X_test, Y_test = load_geolocation_data(complete_prob=True) if params.DATASET_NUMBER == 1: if params.TEXT_ONLY: _coef = 1e-4 else: _coef = 9e-5 #for _coef in [1e-7, 2e-7, 4e-7, 8e-7, 1e-6, 8e-6]: #for _coef in [1e-5, 2e-5, 4e-5, 6e-5, 8e-5, 1e-4, 2e-4]: for _coef in [_coef]: logging.info( str(_coef)) nn_model(X_train, Y_train, X_test, Y_test, complete_prob=True, regul_coef=_coef)