在TensorFlow中遇到InvalidArgumentError的占位符问题

我试图创建一个非常简单的感知器,包含两个隐藏层,用于学习由函数f定义的功能。我遇到的问题(除了我真的不太清楚自己在做什么之外)是,我得到了一个很长的堆栈跟踪(在底部),我认为它起源于定义y_的那一行。这个错误的最后部分是:

InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_1' with dtype float

代码如下:

import tensorflow as tfimport numpy as npdef f(X):    y1 = 2.41*X[0] + 0.09 + np.random.normal()    y2 = 3.84*X[1] + 5.3 + np.random.normal()    y3 = 0.79*X[2] + 13.0 + np.random.normal()    return [y1, y2, y3]x = tf.placeholder(tf.float32, shape = ([None, 3]))y_ = tf.placeholder(tf.float32, shape = ([None, 3]))W1 = tf.Variable(tf.zeros([3, 10]))b = tf.Variable(tf.zeros([10]))x_med = tf.matmul(x, W1) + bW2 = tf.Variable(tf.zeros([10, 3]))y = tf.matmul(x_med, W2)dif = tf.subtract(y_, y)sqrd = tf.reduce_mean(tf.multiply(dif, dif)) / 3#loss = tf.reduce_sum( tf.matmul(np.array(y_ - y), np.array(y_ - y)))loss = tf.reduce_sum(sqrd)optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.03).minimize(loss)correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))X_train = []y_train = []i = 0while i < 100000:    x1 = np.random.uniform(0, 100)    x2 = np.random.uniform(0, 100)    x3 = np.random.uniform(0, 100)    X_train.append([x1, x2, x3])    y_train.append(f([x1, x2, x3]))    i += 1X_test = []y_test = []i = 0while i < 250:    x1 = np.random.uniform(0, 100)    x2 = np.random.uniform(0, 100)    x3 = np.random.uniform(0, 100)    X_test.append([x1, x2, x3])    y_test.append(f([x1, x2, x3]))    i += 1epochs = 1init_op = tf.global_variables_initializer()with tf.Session() as sess:    # initialise the variables    sess.run(init_op)    for epoch in range(epochs):         avg_cost = 0         batchNum = 0         batch_size = 10         total_batch = int(len(X_train) / batch_size)         for i in range(total_batch):             batch_x = X_train[batchNum: batchNum + batch_size]             batch_y = y_train[batchNum: batchNum + batch_size]             batchNum += batch_size             _, c = sess.run([optimizer, loss],                           feed_dict={x:batch_x, y: batch_y})             print(c)             avg_cost += c / total_batch         print("epoch: " + str(epoch) + " avg cost: " + str(avg_cost))

堆栈跟踪如下:

Traceback (most recent call last):  File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1039, in _do_call    return fn(*args)  File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1021, in _run_fn    status, run_metadata)  File "C:\Users\allbee\Anaconda3\lib\contextlib.py", line 89, in __exit__    next(self.gen)  File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 466, in raise_exception_on_not_ok_status    pywrap_tensorflow.TF_GetCode(status))tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float         [[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]During handling of the above exception, another exception occurred:Traceback (most recent call last):  File "ANNTest.py", line 74, in <module>    feed_dict={x:batch_x, y: batch_y})  File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 778, in run    run_metadata_ptr)  File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 982, in _run    feed_dict_string, options, run_metadata)  File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1032, in _do_run    target_list, options, run_metadata)  File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1052, in _do_call    raise type(e)(node_def, op, message)tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float         [[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]Caused by op 'Placeholder_1', defined at:  File "ANNTest.py", line 12, in <module>    y_ = tf.placeholder(tf.float32, shape = ([None, 3]))  File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1507, in placeholder    name=name)  File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 1997, in _placeholder    name=name)  File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 768, in apply_op    op_def=op_def)  File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 2336, in create_op    original_op=self._default_original_op, op_def=op_def)  File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1228, in __init__    self._traceback = _extract_stack()InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_1' with dtype float         [[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

回答:

我怀疑问题出在这行代码上,你喂入了y而不是y_

         _, c = sess.run([optimizer, loss],                       feed_dict={x:batch_x, y: batch_y})

将其改写为以下内容应该可以解决问题:

         _, c = sess.run([optimizer, loss],                       feed_dict={x:batch_x, y_: batch_y})

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注