在TensorFlow中实现KNN的问题

我在TensorFlow中尝试实现K最近邻算法时遇到了困难。我认为要么是我忽略了某个错误,要么是做了一些非常糟糕的事情。

以下代码总是预测Mnist标签为0。

from __future__ import print_functionimport numpy as npimport tensorflow as tf# Import MNIST datafrom tensorflow.examples.tutorials.mnist import input_dataK = 4mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)# In this example, we limit mnist dataXtr, Ytr = mnist.train.next_batch(55000)  # whole training setXte, Yte = mnist.test.next_batch(10000)  # whole test set# tf Graph Inputxtr = tf.placeholder("float", [None, 784])ytr = tf.placeholder("float", [None, 10])xte = tf.placeholder("float", [784])# Euclidean Distancedistance = tf.neg(tf.sqrt(tf.reduce_sum(tf.square(tf.sub(xtr, xte)), reduction_indices=1)))# Prediction: Get min distance neighborsvalues, indices = tf.nn.top_k(distance, k=K, sorted=False)nearest_neighbors = []for i in range(K):    nearest_neighbors.append(np.argmax(ytr[indices[i]]))sorted_neighbors, counts = np.unique(nearest_neighbors, return_counts=True)pred = tf.Variable(nearest_neighbors[np.argmax(counts)])# not works either# neighbors_tensor = tf.pack(nearest_neighbors)# y, idx, count = tf.unique_with_counts(neighbors_tensor)# pred = tf.slice(y, begin=[tf.arg_max(count, 0)], size=tf.constant([1], dtype=tf.int64))[0]accuracy = 0.# Initializing the variablesinit = tf.initialize_all_variables()# Launch the graphwith tf.Session() as sess:    sess.run(init)    # loop over test data    for i in range(len(Xte)):        # Get nearest neighbor        nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: Xte[i, :]})        # Get nearest neighbor class label and compare it to its true label        print("Test", i, "Prediction:", nn_index,              "True Class:", np.argmax(Yte[i]))        # Calculate accuracy        if nn_index == np.argmax(Yte[i]):            accuracy += 1. / len(Xte)    print("Done!")    print("Accuracy:", accuracy)

任何帮助都将不胜感激。


回答:

总的来说,在定义TensorFlow模型时使用numpy函数并不是一个好主意。这正是你的代码无法工作的原因。我只对你的代码做了两个改动。我用tf.argmax替换了np.argmax。我还删除了#This doesn't work either的注释。

这是完整的工作代码:

from __future__ import print_functionimport numpy as npimport tensorflow as tf# Import MNIST datafrom tensorflow.examples.tutorials.mnist import input_dataK = 4mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)# In this example, we limit mnist dataXtr, Ytr = mnist.train.next_batch(55000)  # whole training setXte, Yte = mnist.test.next_batch(10000)  # whole test set# tf Graph Inputxtr = tf.placeholder("float", [None, 784])ytr = tf.placeholder("float", [None, 10])xte = tf.placeholder("float", [784])# Euclidean Distancedistance = tf.negative(tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(xtr, xte)), reduction_indices=1)))# Prediction: Get min distance neighborsvalues, indices = tf.nn.top_k(distance, k=K, sorted=False)nearest_neighbors = []for i in range(K):    nearest_neighbors.append(tf.argmax(ytr[indices[i]], 0))neighbors_tensor = tf.stack(nearest_neighbors)y, idx, count = tf.unique_with_counts(neighbors_tensor)pred = tf.slice(y, begin=[tf.argmax(count, 0)], size=tf.constant([1], dtype=tf.int64))[0]accuracy = 0.# Initializing the variablesinit = tf.initialize_all_variables()# Launch the graphwith tf.Session() as sess:    sess.run(init)    # loop over test data    for i in range(len(Xte)):        # Get nearest neighbor        nn_index = sess.run(pred, feed_dict={xtr: Xtr, ytr: Ytr, xte: Xte[i, :]})        # Get nearest neighbor class label and compare it to its true label        print("Test", i, "Prediction:", nn_index,             "True Class:", np.argmax(Yte[i]))        #Calculate accuracy        if nn_index == np.argmax(Yte[i]):            accuracy += 1. / len(Xte)    print("Done!")    print("Accuracy:", accuracy)

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注