目标:使用Brier分数损失来训练随机森林算法,并使用GridSearchCV进行网格搜索
问题:在使用make_scorer时,目标“y”的概率预测维度错误。
在查看这个问题后,我采用了其建议的代理函数来使用Brier分数损失训练GridSearchCV。下面是一个设置示例:
from sklearn.model_selection import GridSearchCVfrom sklearn.metrics import brier_score_loss,make_scorerfrom sklearn.ensemble import RandomForestClassifierimport numpy as npdef ProbaScoreProxy(y_true, y_probs, class_idx, proxied_func, **kwargs): return proxied_func(y_true, y_probs[:, class_idx], **kwargs)brier_scorer = make_scorer(ProbaScoreProxy, greater_is_better=False, \ needs_proba=True, class_idx=1, proxied_func=brier_score_loss)X = np.random.randn(100,2)y = (X[:,0]>0).astype(int)random_forest = RandomForestClassifier(n_estimators=10)random_forest.fit(X,y)probs = random_forest.predict_proba(X)
现在直接将probs
和y
传递给brier_score_loss
或ProbaScoreProxy
不会导致错误:
ProbaScoreProxy(y,probs,1,brier_score_loss)
输出结果为:
0.0006
现在通过brier_scorer
传递:
brier_scorer(random_forest,X,y)
输出结果为:
---------------------------------------------------------------------------IndexError Traceback (most recent call last)<ipython-input-28-1474bb08e572> in <module>()----> 1 brier_scorer(random_forest,X,y)~/anaconda3/lib/python3.6/site-packages/sklearn/metrics/_scorer.py in __call__(self, estimator, X, y_true, sample_weight) 167 stacklevel=2) 168 return self._score(partial(_cached_call, None), estimator, X, y_true,--> 169 sample_weight=sample_weight) 170 171 def _factory_args(self):~/anaconda3/lib/python3.6/site-packages/sklearn/metrics/_scorer.py in _score(self, method_caller, clf, X, y, sample_weight) 258 **self._kwargs) 259 else:--> 260 return self._sign * self._score_func(y, y_pred, **self._kwargs) 261 262 def _factory_args(self):<ipython-input-25-5321477444e1> in ProbaScoreProxy(y_true, y_probs, class_idx, proxied_func, **kwargs) 5 6 def ProbaScoreProxy(y_true, y_probs, class_idx, proxied_func, **kwargs):----> 7 return proxied_func(y_true, y_probs[:, class_idx], **kwargs) 8 9 brier_scorer = make_scorer(ProbaScoreProxy, greater_is_better=False, needs_proba=True, class_idx=1, proxied_func=brier_score_loss)IndexError: too many indices for array
因此,似乎在make_scorer
中发生了某些变化,导致其概率输入的维度发生了变化,但我无法看出问题所在。
版本:- sklearn: ‘0.22.2.post1’- numpy: ‘1.18.1’
请注意,这里y
的维度是正确的(一维),通过尝试您会发现传递给ProbaScoreProxy
的y_probs
的维度是导致问题的关键。
这是上一个问题中的代码写得不好吗?最终如何创建一个make_score
对象,使其能够被GridSearchCV
接受并用于训练随机森林?
回答:
目标:使用Brier分数损失来训练随机森林算法,并使用GridSearchCV进行网格搜索
为了实现这一目标,您可以直接在GridSearchCV
的scoring
参数中使用字符串值'neg_brier_score'
。
例如:
gc = GridSearchCV(random_forest, param_grid={"n_estimators":[5, 10]}, scoring="neg_brier_score")gc.fit(X, y)print(gc.scorer_) # make_scorer(brier_score_loss, greater_is_better=False, needs_proba=True)