在树莓派上运行CNN模型

我正在进行一个项目,涉及在树莓派3B上进行青光眼检测。我在笔记本电脑上训练了一个大约400MB的”.h5″格式的模型。我尝试使用keras将模型加载到树莓派上。树莓派可以加载其他较小的模型,但加载我的模型时出现了以下错误:

2018-05-15 18:07:04.117054: W tensorflow/core/framework/allocator.cc:101] Allocation of 134217728 exceeds 10% of system memory.2018-05-15 18:07:05.052281: W tensorflow/core/framework/allocator.cc:101] Allocation of 134217728 exceeds 10% of system memory.2018-05-15 18:07:05.513437: W tensorflow/core/framework/allocator.cc:101] Allocation of 134217728 exceeds 10% of system memory.2018-05-15 18:07:06.191609: W tensorflow/core/framework/allocator.cc:101] Allocation of 134217728 exceeds 10% of system memory.Traceback (most recent call last):  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1322, in _do_call    return fn(*args)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1307, in _run_fn    options, feed_dict, fetch_list, target_list, run_metadata)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1409, in _call_tf_sessionrun    run_metadata)tensorflow.python.framework.errors_impl.InternalError: Could not allocate ndarrayDuring handling of the above exception, another exception occurred:Traceback (most recent call last):  File "<stdin>", line 1, in <module>  File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 273, in load_model    topology.load_weights_from_hdf5_group(f['model_weights'], model.layers)  File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 3393, in load_weights_from_hdf5_group    K.batch_set_value(weight_value_tuples)  File "/usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow_backend.py", line 2377, in batch_set_value    get_session().run(assign_ops, feed_dict=feed_dict)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 900, in run    run_metadata_ptr)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1135, in _run    feed_dict_tensor, options, run_metadata)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1316, in _do_run    run_metadata)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1335, in _do_call    raise type(e)(node_def, op, message)tensorflow.python.framework.errors_impl.InternalError: Could not allocate ndarray

任何帮助都将不胜感激。谢谢!


回答:

构建一个足够大的模型,最终它将无法在1GB的树莓派上运行。你已经遇到了这个问题。

你有三个选择:

  1. 构建一个更小的模型,或者
  2. 看看是否有非必要的服务可以关闭(例如,如果你没有使用显示器,可以尝试使用Raspbian的服务器安装版本),或者
  3. 升级到内存更大的设备。例如,Asus Tinker或Oroid-2板,它们与树莓派大小相同,但有2GB的内存。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注