在神经网络中对三维数组进行切片操作

在下面的模型中,代码行 X_train_1 = X_train[:,0:10081,:] 似乎涉及到三维数据的切片操作,而数据集的实际维度是 921 x 10161。请问为什么我们可以进行三维切片操作?谢谢。

inputs_1 = keras.Input(shape=(10081,1))layer1 = Conv1D(64,14)(inputs_1)layer2 = layers.MaxPool1D(5)(layer1)layer3 = Conv1D(64, 14)(layer2)layer4 = layers.GlobalMaxPooling1D()(layer3)inputs_2 = keras.Input(shape=(4,))layer5 = layers.concatenate([layer4, inputs_2])layer6 = Dense(128, activation='relu')(layer5)layer7 = Dense(2, activation='softmax')(layer6)model_2 = keras.models.Model(inputs = [inputs_1, inputs_2], output = [layer7])model_2.summary()X_train, X_test, y_train, y_test = train_test_split(df.iloc[:,0:10085], df[['Result1','Result2']].values, test_size=0.2) X_train = X_train.to_numpy()X_train = X_train.reshape([X_train.shape[0], X_train.shape[1], 1])X_train_1 = X_train[:,0:10081,:]X_train_2 = X_train[:,10081:10085,:].reshape(736,4)X_test = X_test.to_numpy()X_test = X_test.reshape([X_test.shape[0], X_test.shape[1], 1]) X_test_1 = X_test[:,0:10081,:]X_test_2 = X_test[:,10081:10085,:].reshape(185,4)adam = keras.optimizers.Adam(lr = 0.0005)model_2.compile(loss = 'binary_crossentropy', optimizer = adam, metrics = ['acc'])history = model_2.fit([X_train_1,X_train_2], y_train, epochs = 100, batch_size = 256, validation_split = 0.2, callbacks = [keras.callbacks.EarlyStopping(monitor='val_loss', patience=20)])

回答:

请注意,在切片操作之前,变量被重塑为三维:X_train = X_train.reshape([X_train.shape[0], X_train.shape[1], 1]),实际上是在位置2添加了一个额外的维度。

有关 reshape 的更多信息,请参阅 Numpy 的文档:https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注