在Scikit-Learn中设置多个算法试验时遇到麻烦

我正在尝试使用这个来自sklearn文档的示例。我不太确定代码在做什么,尽管我认为我输入数据集的方式可能不对,但最近我遇到了这个错误:

<ipython-input-26-3c3c0763766b> in <module>()     49 for ds in datasets:     50     # preprocess dataset, split into training and test part---> 51     X, y = ds     52     X = StandardScaler().fit_transform(X)     53     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)

ValueError: 要解包的值过多您有什么建议可以让我修改代码以适应我的数据集(这是一个来自pandas数据框的多维numpy数组)并修复这个错误吗?

dataURL = "peridotites_clean_complete.csv"pd_data = pd.read_csv(dataURL)rock_names =  pd_data['ROCK NAME']rock_compositions = pd_data.columns[1:]rock_data = np.vstack([pd_data[x] for x in rock_compositions])classifiers = [    KNeighborsClassifier(3),    SVC(kernel="linear", C=0.025),    SVC(gamma=2, C=1),    DecisionTreeClassifier(max_depth=5),    RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),    AdaBoostClassifier(),    GaussianNB(),    LDA(),    QDA()]X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,                           random_state=1, n_clusters_per_class=1)rng = np.random.RandomState(2)X += 2 * rng.uniform(size=X.shape)linearly_separable = (X, y)datasets = [rock_data]figure = plt.figure(figsize=(27, 9))i = 1# iterate over datasetsfor ds in datasets:    # preprocess dataset, split into training and test part    X, y = ds    X = StandardScaler().fit_transform(X)    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),                         np.arange(y_min, y_max, h))    # just plot the dataset first    cm = plt.cm.RdBu    cm_bright = ListedColormap(['#FF0000', '#0000FF'])    ax = plt.subplot(len(datasets), len(classifiers) + 1, i)    # Plot the training points    ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)    # and testing points    ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)    ax.set_xlim(xx.min(), xx.max())    ax.set_ylim(yy.min(), yy.max())    ax.set_xticks(())    ax.set_yticks(())    i += 1    # iterate over classifiers    for name, clf in zip(names, classifiers):        ax = plt.subplot(len(datasets), len(classifiers) + 1, i)        clf.fit(X_train, y_train)        score = clf.score(X_test, y_test)        # Plot the decision boundary. For that, we will assign a color to each        # point in the mesh [x_min, m_max]x[y_min, y_max].        if hasattr(clf, "decision_function"):            Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])        else:            Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]        # Put the result into a color plot        Z = Z.reshape(xx.shape)        ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)        # Plot also the training points        ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)        # and testing points        ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,                   alpha=0.6)        ax.set_xlim(xx.min(), xx.max())        ax.set_ylim(yy.min(), yy.max())        ax.set_xticks(())        ax.set_yticks(())        ax.set_title(name)        ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),                size=15, horizontalalignment='right')        i += 1figure.subplots_adjust(left=.02, right=.98)plt.show()

回答:

问题在于ds是一个包含超过两个值的列表,如下所示:

>>> ds=['rockatr1','rockatr2','rockatr','rocktype']>>> X,y=dsTraceback (most recent call last):  File "<stdin>", line 1, in <module>ValueError: 要解包的值过多

您必须指定哪部分是X,哪部分是y,如下所示。通常在分类数据中,最后一列用作标签,这就是我在这里所假设的。

>>> X,y=ds[:-1],ds[-1]>>> X['rockatr1', 'rockatr2', 'rockatr']>>> y'rocktype'

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注