在 Ruby 中训练神经网络进行 XOR 运算

我正在尝试训练一个前馈网络,使用 Ruby 库 AI4R 来执行 XOR 运算。然而,在训练后评估 XOR 时,我没有得到正确的输出。有没有人以前使用过这个库,并且成功地让它学习了 XOR 运算?

我使用了两个输入神经元,一个包含三个神经元的隐藏层,以及一个输出层,因为我之前看到过像这样的预先计算好的 XOR 前馈神经网络。

require "rubygems"
require "ai4r"

# Create the network with:
 #   2 inputs
 #   1 hidden layer with 3 neurons
 #   1 outputs
 net = Ai4r::NeuralNetwork::Backpropagation.new([2, 3, 1])  

 example = [[0,0],[0,1],[1,0],[1,1]]
 result = [[0],[1],[1],[0]]

 # Train the network
 400.times do |i|
   j = i % result.length
   puts net.train(example[j], result[j])
 end

 # Use it: Evaluate data with the trained network
puts "evaluate 0,0: #{net.eval([0,0])}"  # =>  evaluate 0,0: 0.507531383375123
puts "evaluate 0,1: #{net.eval([0,1])}"  # =>  evaluate 0,1: 0.491957823618629
puts "evaluate 1,0: #{net.eval([1,0])}"  # =>  evaluate 1,0: 0.516413912471401
puts "evaluate 1,1: #{net.eval([1,1])}"  # =>  evaluate 1,1: 0.500197884691668

Ted


回答:

你的训练迭代次数不够。 如果你将 400.times 更改为 8000.times,你会更接近(如果更改为 20000.times,会更接近)。

20000.times 时,我得到

puts "evaluate 0,0: #{net.eval([0,0])}"  # =>  evaluate 0,0: 0.030879848321403
puts "evaluate 0,1: #{net.eval([0,1])}"  # =>  evaluate 0,1: 0.97105714994505
puts "evaluate 1,0: #{net.eval([1,0])}"  # =>  evaluate 1,0: 0.965055940880282
puts "evaluate 1,1: #{net.eval([1,1])}"  # =>  evaluate 1,1: 0.0268317078331645

你也可以增加 net.learning_rate (但不要增加太多)。

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注