在R中调整SVM时出现错误

我在R中调整SVM时收到了以下错误:

#Error in if (any(co)) { : missing value where TRUE/FALSE needed

我使用的是caret包

svmRTune <- train(x=dataTrain[,predModelContinuous],y=dataTrain[,outcome],method = "svmRadial", tuneLength = 14, trControl = trCtrl)

训练集的结构是

str(dataTrain)'data.frame':   40001 obs. of  42 variables: $ PolNum     : num  2e+08 2e+08 2e+08 2e+08 2e+08 ... $ sex        : Factor w/ 2 levels "Male","Female": 1 1 1 2 1 2 1 1 1 2 ... $ type       : Factor w/ 6 levels "A","B","C","D",..: 3 1 1 2 2 4 3 3 3 2 ... $ catgry     : Ord.factor w/ 3 levels "Large"<"Medium"<..: 2 2 2 3 3 3 3 2 2 2 ... $ occup      : Factor w/ 5 levels "Employed","Housewife",..: 2 1 1 1 5 4 1 1 4 2 ... $ age        : num  48 23 23 39 24 39 28 43 45 38 ... $ group      : Factor w/ 20 levels "1","2","3","4",..: 15 16 12 16 14 8 16 9 12 8 ... $ bonus      : Ord.factor w/ 21 levels "-50"<"-40"<"-30"<..: 14 8 4 3 5 2 5 5 1 15 ... $ poldur     : num  7 1 1 14 2 4 11 2 8 5 ... $ value      : num  1120 21755 18430 11930 24850 ... $ adind      : Factor w/ 2 levels "No","Yes": 2 1 1 2 1 2 2 2 1 1 ... $ Pcode      : chr  "SC22" "CT109" "MA1" "SA12" ... $ Area       : Factor w/ 10 levels "CT","JU","MA",..: 7 1 3 6 6 6 6 4 1 2 ... $ Density    : num  270.5 57.3 43.2 167.9 169.8 ... $ Prem       : num  1159 532 527 197 908 ... $ Premad     : num  53.1 413.7 410.7 61.6 824.6 ... $ numclm     : num  0 1 0 1 0 0 0 1 0 0 ... $ Invite     : num  1 1 1 1 1 1 1 1 1 1 ... $ Renewaltp  : num  1302 928 632 291 960 ... $ Renewalad  : num  58.4 599 440.4 71.3 682 ... $ Markettp   : num  1110 884 565 253 833 ... $ Marketad   : num  53.4 611.4 431.6 55.5 587 ... $ Premtot    : num  1212 532 527 259 908 ... $ Renewaltot : num  1361 928 632 362 960 ... $ Markettot  : num  1163 884 565 309 833 ... $ Renew      : Ord.factor w/ 2 levels "No"<"Yes": 1 1 1 1 1 1 1 1 1 1 ... $ Premchng   : num  1.12 1.74 1.2 1.4 1.06 ... $ Compmeas   : num  1.17 1.05 1.12 1.17 1.15 ... $ numclmRec  : Ord.factor w/ 3 levels "None"<"One"<"Two or more": 1 2 1 2 1 1 1 2 1 1 ... $ PremChngRec: Factor w/ 20 levels "[0.546,0.758)",..: 16 20 18 19 14 3 7 19 17 11 ... $ ageRec     : Factor w/ 20 levels "[19,22)","[22,25)",..: 14 2 2 9 2 9 4 11 12 9 ... $ valueRec   : Factor w/ 20 levels "[ 1005, 3290)",..: 1 15 13 9 17 5 12 12 19 1 ... $ densityRec : Factor w/ 20 levels "[ 14.4, 25.0)",..: 19 6 5 15 15 13 15 1 5 11 ... $ CompmeasRec: Factor w/ 20 levels "[0.716,0.869)",..: 12 6 10 13 12 18 11 16 18 14 ... $ poldurRec  : Ord.factor w/ 16 levels "1"<"2"<"3"<"4"<..: 7 1 1 14 2 4 11 2 8 5 ... $ ageST      : num  0.407 -1.34 -1.34 -0.222 -1.27 ... $ numclmST   : num  -0.433 1.627 -0.433 1.627 -0.433 ... $ PremchngST : num  0.591 3.709 0.98 1.985 0.265 ... $ valueST    : num  -1.462 0.499 0.183 -0.434 0.793 ... $ DensityST  : num  1.918 -0.748 -0.924 0.636 0.659 ... $ CompmeasST : num  0.224 -0.539 -0.098 0.248 0.113 ... $ poldurST   : num  0.097 -1.2 -1.2 1.61 -0.984 ...

以及

sessionInfo()R version 3.0.2 (2013-09-25)Platform: x86_64-w64-mingw32/x64 (64-bit)locale:[1] LC_COLLATE=Italian_Italy.1252  LC_CTYPE=Italian_Italy.1252   [3] LC_MONETARY=Italian_Italy.1252 LC_NUMERIC=C                  [5] LC_TIME=Italian_Italy.1252  attached base packages: [1] parallel  splines   grid      stats     graphics  grDevices utils     [8] datasets  methods   base  other attached packages: [1] C50_0.1.0-16       kernlab_0.9-19     nnet_7.3-8         plyr_1.8.1         [5] gbm_2.1            randomForest_4.6-7 rpart_4.1-8        klaR_0.6-10        [9] MASS_7.3-31        doParallel_1.0.8   iterators_1.0.6    foreach_1.4.1     [13] pROC_1.7.1         mda_0.4-4          class_7.3-10       earth_3.2-7       [17] plotrix_3.5-5      plotmo_1.3-3       Formula_1.1-1      survival_2.37-7   [21] caret_6.0-24       ggplot2_0.9.3.1    lattice_0.20-29    rj_1.1.3-1        loaded via a namespace (and not attached): [1] car_2.0-19          cluster_1.15.2      codetools_0.2-8     [4] colorspace_1.2-4    combinat_0.0-8      compiler_3.0.2      [7] dichromat_2.0-0     digest_0.6.4        gtable_0.1.2       [10] Hmisc_3.14-3        labeling_0.2        latticeExtra_0.6-26[13] munsell_0.4.2       proto_0.3-10        RColorBrewer_1.0-5 [16] Rcpp_0.11.1         reshape2_1.2.2      rj.gd_1.1.3-1      [19] scales_0.2.3        stringr_0.6.2       tools_3.0.2    

回答:

我发布这条信息是为了以防其他人也遇到这个问题。看起来这个问题是由训练数据集中包含了因子或字符变量引起的。

为什么SVM不能处理因子变量,我也不知道。我用手动编码的虚拟变量替换了我的因子变量,这样就正常工作了,但这种方法太不优雅,无法详细记录。

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注