在PyTorch中使用DataLoader在GPU上训练CNN模型

我正在尝试将胸部X光片分类为两类:’正常’和’肺炎’。我的训练和测试集是num_workers=0, pin_memory=True的DataLoader对象。我的设备(GTX 1060 6GB)支持CUDA。在创建CNN模型后,我调用了model = CNN().cuda()。当我尝试训练模型时,我得到了RuntimeError: Expected object of backend CPU but got backend CUDA for argument #2 'weight'的错误。我需要做哪些更改才能在GPU上训练模型?

代码如下:

root = 'chest_xray/'
train_data = datasets.ImageFolder(os.path.join(root, 'train'), transform=train_transform)
test_data = datasets.ImageFolder(os.path.join(root, 'test'), transform=test_transform)
train_loader = DataLoader(train_data,batch_size=10,shuffle=True,num_workers=0,pin_memory=True)
test_loader = DataLoader(test_data,batch_size=10,shuffle=False,num_workers=0,pin_memory=True)
class_names = train_data.classes
class CNN(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 12, 5, 1)
        self.conv2 = nn.Conv2d(12, 24, 5, 1)
        self.conv3 = nn.Conv2d(24, 30, 5, 1)
        self.conv4 = nn.Conv2d(30, 36, 5, 1)
        self.fc1 = nn.Linear(58*58*36, 256)
        self.fc2 = nn.Linear(256, 144)
        self.fc3 = nn.Linear(144, 84)
        self.fc4 = nn.Linear(84, 16)
        self.fc5 = nn.Linear(16, 2)
        
    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv3(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv4(x))
        x = F.max_pool2d(x, 2, 2)
        
        x = x.view(-1, 58*58*36)
        
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = F.relu(self.fc4(x))
        x = self.fc5(x)
        
        return F.log_softmax(x, dim=1)
model = CNN().cuda()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
epochs = 2
train_losses = []
train_correct = []
for i in range(epochs):
    trn_correct = 0
    tst_correct = 0
    
    for b, (X_train, y_train) in enumerate(train_loader):
        y_pred = model(X_train)
        loss = criterion(y_pred, y_train)
        
        predicted = torch.max(y_pred.data, 1)[1]
        batch_correct = (predicted == y_train).sum()
        trn_correct += batch_correct
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if b % 200 == 0:
            print(f'epoch: {i+1} batch: {b} progress: {10*b/len(train_data)} loss: {loss.item()} accuracy: {10*trn_correct/b}%')
        
    train_losses.append(loss)
    train_correct.append(trn_correct)

回答:

在这一行之后:

for b, (X_train, y_train) in enumerate(train_loader):

添加以下代码:

X_train, y_train = X_train.cuda(), y_train.cuda()

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注