我在尝试通过从一个更大的DataFrame中抽取100,000行的数据来进行机器学习的训练和测试。我已经尝试过抽取30,000到60,000行的随机样本,并得到了预期的输出,但当增加到100,000行以上时,出现了内存错误。
# coding=utf-8import pandas as pdfrom pandas import DataFrame, Seriesimport numpy as npimport nltkimport reimport randomfrom random import randintimport csvimport dask.dataframe as ddimport sysreload(sys)sys.setdefaultencoding('utf-8')from sklearn.linear_model import LogisticRegressionfrom sklearn.feature_extraction import DictVectorizerfrom sklearn.preprocessing import Imputerlr = LogisticRegression()dv = DictVectorizer()imp = Imputer(missing_values='NaN', strategy='most_frequent', axis=0)# Get csv file into data framedata = pd.read_csv("file.csv", header=0, encoding="utf-8")df = DataFrame(data)# Random sampling a smaller dataframe for debuggingrows = random.sample(df.index, 100000)df = df.ix[rows] # Warning!!!! overwriting original df# Assign X and y variablesX = df.raw_name.valuesy = df.ethnicity2.values# Feature extraction functionsdef feature_full_last_name(nameString): try: last_name = nameString.rsplit(None, 1)[-1] if len(last_name) > 1: # not accept name with only 1 character return last_name else: return '?' except: return '?'# Transform format of X variables, and spit out a numpy array for all featuresmy_dict = [{'last-name': feature_full_last_name(i)} for i in X]all_dict = my_dictnewX = dv.fit_transform(all_dict).toarray()# Separate the training and testing data setshalf_cut = int(len(df)/2.0)*-1X_train = newX[:half_cut]X_test = newX[half_cut:]y_train = y[:half_cut]y_test = y[half_cut:]# Fitting X and y into model, using training datalr.fit(X_train, y_train)# Making predictions using trained datay_train_predictions = lr.predict(X_train)y_test_predictions = lr.predict(X_test)print (y_train_predictions == y_train).sum().astype(float)/(y_train.shape[0])print (y_test_predictions == y_test).sum().astype(float)/(y_test.shape[0])
错误声明:
Traceback (most recent call last): File "C:\Users\Dropbox\Python_Exercises\_Scraping\BeautifulSoup\FamilySearch.org\FamSearch_Analysis\MachineLearning\FamSearch_LogReg_GOOD8.py", line 93, in <module> newX = dv.fit_transform(all_dict).toarray() File "E:\Program Files Extra\Python27\lib\site-packages\scipy\sparse\compressed.py", line 942, in toarray return self.tocoo(copy=False).toarray(order=order, out=out) File "E:\Program Files Extra\Python27\lib\site-packages\scipy\sparse\coo.py", line 274, in toarray B = self._process_toarray_args(order, out) File "E:\Program Files Extra\Python27\lib\site-packages\scipy\sparse\base.py", line 793, in _process_toarray_args return np.zeros(self.shape, dtype=self.dtype, order=order)MemoryError
回答:
这看起来不对:
newX = dv.fit_transform(all_dict).toarray()
因为scikit-learn中的几乎所有估计器都支持稀疏数据集,但你试图将你的稀疏数据集转换为密集数据集。当然,这会消耗大量的内存。你需要在代码中避免使用todense()和toarray()方法。