我有一组4个主成分(见下面的pc1:pc2),我用它们作为输入变量来预测我的y变量(下面的y-var)。我尝试使用SVM来预测y-var,方法如下,使用pc1和pc2作为输入:
from sklearn.decomposition import PCAfrom mlxtend.plotting import plot_decision_regionsfrom mlxtend.plotting import plot_decision_regionsfrom sklearn.svm import SVCdf = x_var[['pc1','pc2']].join(y_var["y-var"])clf = SVC(C=1,gamma=0.0001)X_train = np.array(df[['pc1', 'pc2']])y_train = np.array(df["y-var"])clf.fit(X_train, y_train)plot_decision_regions((X_train), (y_train), clf=clf, legend=2)
这给了我以下结果:
显然,SVM将所有内容都分类为’1’(在图片中看不到决策边界)。为什么我没有得到0和1的分类?我还尝试了不同的核函数,并进行了网格搜索,但结果总是相同的。
pc1 pc2 y-var0 0.519179 0.247208 11 0.271661 0.378146 12 0.160372 0.395769 13 0.131858 0.377220 04 -0.082872 0.099886 15 -0.018304 0.125293 16 -0.075480 0.129186 17 -0.120394 0.103077 18 -0.079285 0.315473 09 -0.061470 0.373005 110 -0.114704 0.318144 011 -0.036623 0.402758 012 -0.266696 0.102101 113 -0.304520 -0.044354 114 -0.341065 -0.091845 115 -0.335393 -0.158577 116 -0.294246 -0.172631 117 -0.112002 0.107467 018 -0.008648 0.039244 019 -0.016432 -0.011859 120 0.025505 -0.003516 021 0.065414 -0.144414 022 0.058254 -0.199284 123 0.080844 -0.227434 124 0.146013 -0.177407 025 0.072719 -0.215493 126 0.076515 -0.218327 127 0.073930 -0.205280 028 0.084932 -0.213145 129 0.127504 -0.119456 130 0.410069 -0.070637 031 0.444208 -0.054756 032 0.359892 -0.039921 133 0.351449 0.039005 134 0.340579 -0.061595 135 0.195910 -0.088828 136 0.169974 0.014353 137 0.168284 -0.034547 038 0.163418 0.009783 139 0.222996 -0.020889 040 0.131592 0.197540 141 0.035192 0.160503 142 -0.005788 0.010568 143 -0.146251 -0.078299 044 -0.165629 -0.054383 145 -0.157875 -0.065957 046 -0.144255 -0.038511 147 -0.115826 -0.080849 048 -0.145774 -0.064944 149 -0.218346 -0.008935 150 -0.154941 -0.066568 051 -0.173926 -0.109107 052 -0.191553 -0.059816 153 -0.209128 -0.118813 1
回答:
你的代码运行正常,C和gamma的值似乎是问题所在。在你原来的代码中使用clf = SVC(C=1000, gamma=5)
并修改C和gamma为其他值应该会产生结果。
使用C=1000
和gamma=5
的输出:
代码测试:
from sklearn.decomposition import PCAfrom mlxtend.plotting import plot_decision_regionsfrom mlxtend.plotting import plot_decision_regionsfrom sklearn.svm import SVCpc1 = [-0.114704, -0.036623, -0.266696, -0.304520]pc2 = [0.318144, 0.402758, 0.102101, -0.044354]yvar = [0, 0, 1, 1]import numpy as np df = np.column_stack((pc1, pc2))clf = SVC(C=1, gamma=0.0001, kernel='linear')X_train = np.array(df)y_train = np.array(yvar)clf.fit(X_train, y_train)plot_decision_regions((X_train), (y_train), clf=clf, legend=2)
输出:
乘以一个较大的数字,
from sklearn.decomposition import PCAfrom mlxtend.plotting import plot_decision_regionsfrom mlxtend.plotting import plot_decision_regionsfrom sklearn.svm import SVCpc1 = [0.519179,0.271661,0.160372,0.131858,-0.082872,-0.018304,-0.075480,-0.120394,-0.079285,-0.061470,-0.114704,-0.036623,-0.266696,-0.304520,-0.341065,-0.335393,-0.294246,-0.112002,-0.008648,-0.016432,0.025505,0.065414,0.058254,0.080844,0.146013,0.072719,0.076515,0.073930,0.084932,0.127504,0.410069,0.444208,0.359892,0.351449,0.340579,0.195910,0.169974,0.168284,0.163418,0.222996,0.131592,0.035192,-0.005788,-0.146251,-0.165629,-0.157875,-0.144255,-0.115826,-0.145774,-0.218346,-0.154941,-0.173926,-0.191553,-0.209128]pc2 = [0.247208,0.378146,0.395769,0.377220,0.099886,0.125293,0.129186,0.103077,0.315473,0.373005,0.318144,0.402758,0.102101,-0.044354,-0.091845,-0.158577,-0.172631,0.107467,0.039244,-0.011859,-0.003516,-0.144414,-0.199284,-0.227434,-0.177407,-0.215493,-0.218327,-0.205280,-0.213145,-0.119456,-0.070637,-0.054756,-0.039921,0.039005,-0.061595,-0.088828,0.014353,-0.034547,0.009783,-0.020889,0.197540,0.160503,0.010568,-0.078299,-0.054383,-0.065957,-0.038511,-0.080849,-0.064944,-0.008935,-0.066568,-0.109107,-0.059816,-0.118813]yvar = [1,1,1,0,1,1,1,1,0,1,0,0,1,1,1,1,1,0,0,1,0,0,1,1,0,1,1,0,1,1,0,0,1,1,1,1,1,0,1,0,1,1,1,0,1,0,1,0,1,1,0,0,1,1]pc1 = [i * 10 for i in pc1]pc2 = [i * 10 for i in pc2]import numpy as npdf = np.column_stack((pc1, pc2))#df = x_var[['pc1','pc2']].join(y_var["y-var"])from sklearn.neural_network import MLPClassifierfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.svm import SVCfrom sklearn.gaussian_process import GaussianProcessClassifierfrom sklearn.gaussian_process.kernels import RBFfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.ensemble import RandomForestClassifier, AdaBoostClassifierfrom sklearn.naive_bayes import GaussianNBfrom sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis#clf = RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1)#clf = AdaBoostClassifier()#clf = QuadraticDiscriminantAnalysis()#clf = KNeighborsClassifier(3)#clf = DecisionTreeClassifier(max_depth=20)#clf = SVC(C=1, gamma=0.25)clf = SVC(C=100, gamma=0.5)X_train = np.array(df)y_train = np.array(yvar)clf.fit(X_train, y_train)plot_decision_regions((X_train), (y_train), clf=clf, legend=2)
输出: