我在Python中实现了逻辑回归,使用了如下的正则化损失函数:
但是梯度算法表现得很差。请先阅读粗体文本!请逐个代码单元格粘贴代码
import numpy as np, scipy as sp, sklearn as slfrom scipy import special as ssfrom sklearn.base import ClassifierMixin, BaseEstimatorfrom sklearn.datasets import make_classificationimport theano.tensor as T
这是损失函数:(scipy用于在1
附近“裁剪”对数的参数)
def lossf(w, X, y, l1, l2): w.resize((w.shape[0],1)) y.resize((y.shape[0],1)) lossf1 = np.sum(ss.log1p(1 + ss.expm1(np.multiply(-y, np.dot(X, w))))) lossf2 = l2 * (np.dot(np.transpose(w), w)) lossf3 = l1 * sum(abs(w)) lossf = np.float(lossf1 + lossf2 + lossf3) return lossf
这是梯度函数:(??这里有问题?? -请看结尾)
def gradf(w, X, y, l1, l2): w.resize((w.shape[0],1)) y.resize((y.shape[0],1)) gradw1 = l2 * 2 * w gradw2 = l1 * np.sign(w) gradw3 = np.multiply(-y,(2 + ss.expm1(np.multiply(-y, np.dot(X, w))))) gradw3 = gradw3 / (2 + (ss.expm1((np.multiply(-y, np.dot(X, w)))))) gradw3 = np.sum(np.multiply(gradw3, X), axis=0) gradw3.resize(gradw3.shape[0],1) gradw = gradw1 + gradw2 + gradw3 gradw.resize(gradw.shape[0],) return np.transpose(gradw)
这是我的LR类:
class LR(ClassifierMixin, BaseEstimator): def __init__(self, lr=0.0001, l1=0.1, l2=0.1, num_iter=100, verbose=0): self.l1 = l1 self.l2 = l2 self.w = None self.lr = lr self.verbose = verbose self.num_iter = num_iterdef fit(self, X, y): n, d = X.shape self.w = np.zeros(shape=(d,)) for i in range(self.num_iter): g = gradf(self.w, X, y, self.l1, self.l2) g.resize((g.shape[0],1)) self.w = self.w - g print "Loss: ", lossf(self.w, X, y, self.l1, self.l2) return selfdef predict_proba(self, X): probs = 1/(2 + ss.expm1(np.dot(-X, self.w))) return probs def predict(self, X): probs = self.predict_proba(X) probs = np.sign(2 * probs - 1) probs.resize((probs.shape[0],)) return probs
这是测试代码:
X, y = make_classification(n_features=100, n_samples=100)y = 2 * (y - 0.5)clf = LR(lr=0.000001, l1=0.1, l2=0.1, num_iter=10, verbose=0)clf = clf.fit(X, y)yp = clf.predict(X)yp.resize((100,1))accuracy = int(sum(y == yp))/len(y)
哦,不。这没有收敛。但是如果我用theano替换我的gradw3:
gradw3 = get_gradw3(w,X,y)where:w,X,y = T.matrices("wXy") logloss = T.sum(T.log1p(1 + T.expm1(-y* T.dot(X, w)))) get_gradw3 = theano.function([w,X,y],T.grad(logloss,w).reshape(w.shape))
它会收敛到100%的准确率。这意味着,我的gradw3实现有误,但我找不到错误。急切地寻求帮助!
回答:
实际上,我最终让它工作了。我不知道确切的关键变化是什么,但这是我更改的摘要:
-
将所有
np.multiply
替换为*
-
降低学习率和正则化器
- 对指数应用
np.nan_to_num
所以这是最终的代码:
def lossf(w, X, y, l1, l2): w.resize((w.shape[0],1)) y.resize((y.shape[0],1)) lossf1 = np.sum(ss.log1p(1 + np.nan_to_num(ss.expm1(-y * np.dot(X, w))))) lossf2 = l2 * (np.dot(np.transpose(w), w)) lossf3 = l1 * sum(abs(w)) lossf = np.float(lossf1 + lossf2 + lossf3) return lossfdef gradf(w, X, y, l1, l2): w.resize((w.shape[0],1)) y.resize((y.shape[0],1)) gradw1 = l2 * 2 * w gradw2 = l1 * np.sign(w) gradw3 = -y * (1 + np.nan_to_num(ss.expm1(-y * np.dot(X, w)))) gradw3 = gradw3 / (2 + np.nan_to_num(ss.expm1(-y * np.dot(X, w)))) gradw3 = np.sum(gradw3 * X, axis=0) gradw3.resize(gradw3.shape[0],1) gradw = gradw1 + gradw2 + gradw3 gradw.resize(gradw.shape[0],) return np.transpose(gradw)class LR(ClassifierMixin, BaseEstimator): def __init__(self, lr=0.000001, l1=0.1, l2=0.1, num_iter=100, verbose=0): self.l1 = l1 self.l2 = l2 self.w = None self.lr = lr self.verbose = verbose self.num_iter = num_iter def fit(self, X, y): n, d = X.shape self.w = np.zeros(shape=(d,)) for i in range(self.num_iter): print "\n", "Iteration ", i g = gradf(self.w, X, y, self.l1, self.l2) g.resize((g.shape[0],1)) self.w = self.w - g print "Loss: ", lossf(self.w, X, y, self.l1, self.l2) return self def predict_proba(self, X): probs = 1/(2 + ss.expm1(np.dot(-X, self.w))) return probs def predict(self, X): probs = self.predict_proba(X) probs = np.sign(2 * probs - 1) probs.resize((probs.shape[0],)) return probs