我已经训练了一个模型,并希望计算几个重要的指标,如accuracy
(准确率)、precision
(精确率)、recall
(召回率)和f1 score
(F1分数)。
我遵循的过程是:
from pyspark.ml.classification import LogisticRegressionlr = LogisticRegression(featuresCol='features',labelCol='label')lrModel = lr.fit(train)lrPredictions = lrModel.transform(test)from pyspark.ml.evaluation import MulticlassClassificationEvaluatorfrom pyspark.ml.evaluation import BinaryClassificationEvaluatoreval_accuracy = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="accuracy")eval_precision = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="precision")eval_recall = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="recall")eval_f1 = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="f1Measure")eval_auc = BinaryClassificationEvaluator(labelCol="label", rawPredictionCol="prediction")accuracy = eval_accuracy.evaluate(lrPredictions)precision = eval_precision.evaluate(lrPredictions)recall = eval_recall.evaluate(lrPredictions)f1score = eval_f1.evaluate(lrPredictions)auc = eval_accuracy.evaluate(lrPredictions)
然而,它只能计算accuracy
(准确率)和auc
(AUC),但无法计算其他三个指标。我应该如何修改代码?
回答:
根据文档,对于F1度量、精确率和召回率,MulticlassClassificationEvaluator
的相关参数应分别为
metricName="f1"metricName="precisionByLabel"metricName="recallByLabel"