这段openCV代码用于检测由AirSim(Unreal插件)API流传输的视频中的对象。该脚本能够检测来自网络摄像头的视频中的对象,但我希望通过client.simGetImage传递视频流时,我得到了断言失败的错误:
, 第103行,detections = net.forward() cv2.error: OpenCV(3.4.3) /io/opencv/modules/dnn/src/layers/convolution_layer.cpp:1021: 错误: (-215:Assertion failed) inputs[0]->size[1] % blobs[0].size[1] == 0 在函数’forward’中
代码如下:
from imutils.video import VideoStreamfrom imutils.video import FPSimport numpy as npimport argparseimport imutilsimport timeimport cv2import setup_path import airsimimport sysap = argparse.ArgumentParser()ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file")ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model")ap.add_argument("-c", "--confidence", type=float, default=0.2, help="minimum probability to filter weak detections")args = vars(ap.parse_args())cameraType = "scene"cameraTypeMap = { "depth": airsim.ImageType.DepthVis, "segmentation": airsim.ImageType.Segmentation, "seg": airsim.ImageType.Segmentation, "scene": airsim.ImageType.Scene, "disparity": airsim.ImageType.DisparityNormalized, "normals": airsim.ImageType.SurfaceNormals}client = airsim.MultirotorClient()client.confirmConnection()client.enableApiControl(True)client.armDisarm(True)client.takeoffAsync().join()fontFace = cv2.FONT_HERSHEY_SIMPLEXfontScale = 0.5thickness = 2textSize, baseline = cv2.getTextSize("FPS", fontFace, fontScale, thickness)print (textSize)textOrg = (10, 10 + textSize[1])frameCount = 0startTime=time.clock()fps = 0CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))print("[INFO] loading model...")net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])print("[INFO] starting video stream...")time.sleep(2.0)fps = FPS().start()while True: rawImage = client.simGetImage("3", cameraTypeMap[cameraType]) if (rawImage == None): print("Camera is not returning image, please check airsim for error messages") sys.exit(0) else: png = cv2.imdecode(airsim.string_to_uint8_array(rawImage), cv2.IMREAD_UNCHANGED) frame = imutils.resize(png, width=400) (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 0.007843, (300, 300), 127.5) net.setInput(blob) detections = net.forward() for i in np.arange(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > args["confidence"]: idx = int(detections[0, 0, i, 1]) box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100) cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2) y = startY - 15 if startY - 15 > 15 else startY + 15 cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF if key == ord("q"): break fps.update()fps.stop()print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))cv2.destroyAllWindows()
回答:
使脚本正常工作所需的更改:
rawImage = client.simGetImage("3", cameraTypeMap[cameraType])np_response_image = np.asarray(bytearray(rawImage), dtype="uint8")frame = cv2.imdecode(np_response_image, cv2.IMREAD_COLOR)frame = imutils.resize(png, width=400)