我在MLens Superlearner管道的交叉验证折叠中尝试缩放我的数据。当我在管道中使用StandardScaler时(如下所示),我收到了以下警告:
/miniconda3/envs/r_env/lib/python3.7/site-packages/mlens/parallel/_base_functions.py:226: MetricWarning: [pipeline-1.mlpclassifier.0.2] 无法为pipeline-1.mlpclassifier评分。详细信息:ValueError(“分类指标无法处理二元和连续多输出目标的混合”)(name, inst_name, exc), MetricWarning)
值得注意的是,当我省略StandardScaler()时,警告会消失,但数据不会被缩放。
breast_cancer_data = load_breast_cancer()X = breast_cancer_data['data']y = breast_cancer_data['target']from sklearn.model_selection import train_test_splitX, X_val, y, y_val = train_test_split(X, y, test_size=.3, random_state=0)from sklearn.base import BaseEstimatorclass RFBasedFeatureSelector(BaseEstimator): def __init__(self, n_estimators): self.n_estimators = n_estimators self.selector = None def fit(self, X, y): clf = RandomForestClassifier(n_estimators=self.n_estimators, random_state = RANDOM_STATE, class_weight = 'balanced') clf = clf.fit(X, y) self.selector = SelectFromModel(clf, prefit=True, threshold = 0.001) def transform(self, X): if self.selector is None: raise AttributeError('The selector attribute has not been assigned. You cannot call transform before first calling fit or fit_transform.') return self.selector.transform(X) def fit_transform(self, X, y): self.fit(X, y) return self.transform(X)N_FOLDS = 5RF_ESTIMATORS = 1000N_ESTIMATORS = 1000RANDOM_STATE = 42from mlens.metrics import make_scorerfrom sklearn.metrics import roc_auc_score, balanced_accuracy_scoreaccuracy_scorer = make_scorer(balanced_accuracy_score, average='micro', greater_is_better=True)from mlens.ensemble.super_learner import SuperLearnerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.neural_network import MLPClassifierfrom sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifierfrom sklearn.preprocessing import StandardScalerfrom sklearn.feature_selection import SelectFromModelensemble = SuperLearner(folds=N_FOLDS, shuffle=True, random_state=RANDOM_STATE, n_jobs=10, scorer=balanced_accuracy_score, backend="multiprocessing")preprocessing1 = {'pipeline-1': [StandardScaler()] }preprocessing2 = {'pipeline-1': [RFBasedFeatureSelector(N_ESTIMATORS)] }estimators = {'pipeline-1': [RandomForestClassifier(RF_ESTIMATORS, random_state=RANDOM_STATE, class_weight='balanced'), MLPClassifier(hidden_layer_sizes=(10, 10, 10), activation='relu', solver='sgd', max_iter=5000) ] }ensemble.add(estimators, preprocessing2, preprocessing1)ensemble.add_meta(LogisticRegression(solver='liblinear', class_weight = 'balanced'))ensemble.fit(X,y)yhat = ensemble.predict(X_val)balanced_accuracy_score(y_val, yhat)```>Error text: /miniconda3/envs/r_env/lib/python3.7/site-packages/mlens/parallel/_base_functions.py:226: MetricWarning: [pipeline-1.mlpclassifier.0.2] 无法为pipeline-1.mlpclassifier评分。详细信息:ValueError("分类指标无法处理二元和连续多输出目标的混合") (name, inst_name, exc), MetricWarning)
回答:
您目前在调用add方法时,将预处理步骤作为两个独立的参数传递。您可以将它们合并如下:
preprocessing = {'pipeline-1': [RFBasedFeatureSelector(N_ESTIMATORS),StandardScaler()]}
请参考此处找到的add方法的文档:https://mlens.readthedocs.io/en/0.1.x/source/mlens.ensemble.super_learner/