我想使用条件生成对抗网络(GANs)来生成一个领域(记为domain A
)的图像,同时输入来自另一个领域(记为domain B
)的图像以及类信息。这两个领域都与相同的标签信息相关联(每个domain A
的图像都与domain B
的一个图像和一个特定的标签相关联)。我在Keras中的生成器模型目前如下所示:
def generator_model_v2(): global BATCH_SIZE inputs = Input((IN_CH, img_cols, img_rows)) e1 = BatchNormalization(mode=0)(inputs) e2 = Flatten()(e1) e3 = BatchNormalization(mode=0)(e2) e4 = Dense(1024, activation="relu")(e3) e5 = BatchNormalization(mode=0)(e4) e6 = Dense(512, activation="relu")(e5) e7 = BatchNormalization(mode=0)(e6) e8 = Dense(512, activation="relu")(e7) e9 = BatchNormalization(mode=0)(e8) e10 = Dense(IN_CH * img_cols *img_rows, activation="relu")(e9) e11 = Reshape((3, 28, 28))(e10) e12 = BatchNormalization(mode=0)(e11) e13 = Activation('tanh')(e12) model = Model(input=inputs, output=e13) return model
目前,我的生成器输入的是domain A
的图像(目标是输出domain B
的图像)。我想以某种方式也输入domain A
的类信息,以便生成domain B
中相同类的图像。我想在平坦化(flattening)之后添加标签信息。这样,输入大小就不再是1x1024
,而是1x1025
。我可以在生成器中使用第二个输入来处理类信息吗?如果可以,在GANs的训练过程中如何调用生成器?
训练过程如下:
discriminator_and_classifier_on_generator = generator_containing_discriminator_and_classifier( generator, discriminator, classifier)generator.compile(loss=generator_l1_loss, optimizer=g_optim)discriminator_and_classifier_on_generator.compile( loss=[generator_l1_loss, discriminator_on_generator_loss, "categorical_crossentropy"], optimizer="rmsprop")discriminator.compile(loss=discriminator_loss, optimizer=d_optim) # rmspropclassifier.compile(loss="categorical_crossentropy", optimizer=c_optim)for epoch in range(30): for index in range(int(X_train.shape[0] / BATCH_SIZE)): image_batch = Y_train[index * BATCH_SIZE:(index + 1) * BATCH_SIZE] label_batch = LABEL_train[index * BATCH_SIZE:(index + 1) * BATCH_SIZE] # replace with your data here generated_images = generator.predict(X_train[index * BATCH_SIZE:(index + 1) * BATCH_SIZE]) real_pairs = np.concatenate((X_train[index * BATCH_SIZE:(index + 1) * BATCH_SIZE, :, :, :], image_batch),axis=1) fake_pairs = np.concatenate((X_train[index * BATCH_SIZE:(index + 1) * BATCH_SIZE, :, :, :], generated_images), axis=1) X = np.concatenate((real_pairs, fake_pairs)) y = np.concatenate((np.ones((100, 1, 64, 64)), np.zeros((100, 1, 64, 64)))) d_loss = discriminator.train_on_batch(X, y) discriminator.trainable = False c_loss = classifier.train_on_batch(image_batch, label_batch) classifier.trainable = False g_loss = discriminator_and_classifier_on_generator.train_on_batch( X_train[index * BATCH_SIZE:(index + 1) * BATCH_SIZE, :, :, :], [image_batch, np.ones((100, 1, 64, 64)), label_batch]) discriminator.trainable = True classifier.trainable = True
这段代码是条件深度卷积生成对抗网络的实现(在判别器上增加了一个分类器)。网络的功能如下:
def generator_containing_discriminator_and_classifier(generator, discriminator, classifier): inputs = Input((IN_CH, img_cols, img_rows)) x_generator = generator(inputs) merged = merge([inputs, x_generator], mode='concat', concat_axis=1) discriminator.trainable = False x_discriminator = discriminator(merged) classifier.trainable = False x_classifier = classifier(x_generator) model = Model(input=inputs, output=[x_generator, x_discriminator, x_classifier]) return modeldef generator_containing_discriminator(generator, discriminator): inputs = Input((IN_CH, img_cols, img_rows)) x_generator = generator(inputs) merged = merge([inputs, x_generator], mode='concat',concat_axis=1) discriminator.trainable = False x_discriminator = discriminator(merged) model = Model(input=inputs, output=[x_generator,x_discriminator]) return model
回答:
首先,按照条件生成对抗网络中给出的建议,你需要定义第二个输入。然后,只需将这两个输入向量连接起来,并处理这个连接后的向量。
def generator_model_v2(): input_image = Input((IN_CH, img_cols, img_rows)) input_conditional = Input((n_classes)) e0 = Flatten()(input_image) e1 = Concatenate()([e0, input_conditional]) e2 = BatchNormalization(mode=0)(e1) e3 = BatchNormalization(mode=0)(e2) e4 = Dense(1024, activation="relu")(e3) e5 = BatchNormalization(mode=0)(e4) e6 = Dense(512, activation="relu")(e5) e7 = BatchNormalization(mode=0)(e6) e8 = Dense(512, activation="relu")(e7) e9 = BatchNormalization(mode=0)(e8) e10 = Dense(IN_CH * img_cols *img_rows, activation="relu")(e9) e11 = Reshape((3, 28, 28))(e10) e12 = BatchNormalization(mode=0)(e11) e13 = Activation('tanh')(e12) model = Model(input=[input_image, input_conditional] , output=e13) return model
然后,你需要在训练过程中也将类标签传递给网络:
classifier.train_on_batch((image_batch, class_batch), label_batch)