在Keras 1.2.2中,我创建了一个数据集,其维度如下:
X_train: (2000, 100, 32, 32, 3) y_train: (2000,1)
这里,2000 是实例数量(数据批次),100 是每个批次中的样本数,32 是图像的行数和列数,3 是通道数(RGB)。
我编写了以下代码,在CNN之后应用LSTM,但出现了以下错误:
ValueError: Input 0 is incompatible with layer lstm_layer: expected ndim=3, found ndim=2
这是我的代码:
import kerasfrom keras.layers import Input ,Dense, Dropout, Activation, LSTMfrom keras.layers import Convolution2D, MaxPooling2D, Flatten, Reshapefrom keras.models import Sequentialfrom keras.layers.wrappers import TimeDistributedfrom keras.layers.pooling import GlobalAveragePooling1Dfrom keras.optimizers import SGDfrom keras.utils import np_utilsfrom keras.models import Modelimport numpy as nptimesteps=100;number_of_samples=2500;nb_samples=number_of_samples;frame_row=32;frame_col=32;channels=3;nb_epoch=1;batch_size=timesteps;data= np.random.random((2500,timesteps,frame_row,frame_col,channels))label=np.random.random((2500,timesteps,1))X_train=data[0:2000,:]y_train=label[0:2000]X_test=data[2000:,:]y_test=label[2000:,:]#%%model=Sequential(); model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=X_train.shape[2:]))model.add(Activation('relu'))model.add(Convolution2D(32, 3, 3))model.add(Activation('relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.25))model.add(Convolution2D(64, 3, 3, border_mode='same'))model.add(Activation('relu'))model.add(Convolution2D(64, 3, 3))model.add(Activation('relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.25))model.add(Flatten())model.add(Dense(512))model.add(Activation('relu'))model.add(Dropout(0.5))model.add(Dense(35, input_shape=(timesteps,512), name="first_dense" ));#model.add(Dense(1, name="test_dense")); model.add(LSTM(20, return_sequences=True, name="lstm_layer"));#%%model.add(TimeDistributed(Dense(1), name="time_distr_dense_one"))model.add(GlobalAveragePooling1D(name="global_avg"))#%%model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])#%%model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, validation_data=(X_test, y_test))
回答:
尝试将每个 Convolution2D(...)
替换为:
TimeDistributed(Convolution2D(...))
你需要让模型知道你的数据是序列性的,并且你希望对序列中的每个元素应用某些层。这就是 TimeDistributed
包装器的用途。