我在尝试使用Keras绘制训练和测试学习曲线时,遇到了以下代码导致的KeyError: 'val_acc'
错误。
官方文档<https://keras.io/callbacks/>
提到,要使用'val_acc'
,需要启用验证和准确率监控,但我对此不太理解,也不知道如何在我的代码中实现。
任何帮助都将不胜感激。谢谢。
seed = 7np.random.seed(seed)dataframe = pandas.read_csv("iris.csv", header=None)dataset = dataframe.valuesX = dataset[:,0:4].astype(float)Y = dataset[:,4]encoder = LabelEncoder()encoder.fit(Y)encoded_Y = encoder.transform(Y)dummy_y = np_utils.to_categorical(encoded_Y)kfold = StratifiedKFold(y=Y, n_folds=10, shuffle=True, random_state=seed)cvscores = []for i, (train, test) in enumerate(kfold): model = Sequential() model.add(Dense(12, input_dim=4, init='uniform', activation='relu')) model.add(Dense(3, init='uniform', activation='sigmoid')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history=model.fit(X[train], dummy_y[train], nb_epoch=200, batch_size=5, verbose=0) scores = model.evaluate(X[test], dummy_y[test], verbose=0) print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) cvscores.append(scores[1] * 100)print( "%.2f%% (+/- %.2f%%)" % (np.mean(cvscores), np.std(cvscores))) print(history.history.keys())# summarize history for accuracyplt.plot(history.history['acc'])plt.plot(history.history['val_acc'])plt.title('model accuracy')plt.ylabel('accuracy')plt.xlabel('epoch')plt.legend(['train', 'test'], loc='upper left')plt.show()
回答:
看起来在Keras + Tensorflow 2.0中,val_acc
已被重命名为val_accuracy