在决策树分类器拟合数据集时出现的ValueError

我已经为我正在处理的数据集创建了特征X和标签y。

此时,我想在这个数据集上训练一个随机森林分类器,但在拟合训练数据时遇到了一个ValueError:setting an array element with a sequence.

以下是X和y的特征以及错误详情:

X:

(array([-8.1530527e-10,  8.9952795e-10, -9.1185753e-10, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([-0.00050612, -0.00057967, -0.00035985, ...,  0.        ,         0.        ,  0.        ], dtype=float32), array([ 6.8139506e-08, -2.3837963e-05, -2.4622474e-05, ...,         3.1678758e-06, -2.4535689e-06,  0.0000000e+00], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,         6.9306935e-07, -6.6020442e-07,  0.0000000e+00], dtype=float32), array([-7.30260945e-05, -1.18022966e-04, -1.08280736e-04, ...,         8.83421380e-05,  4.97258679e-06,  0.00000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([ 2.3406714e-05,  3.1186773e-05,  4.9467826e-06, ...,         1.2180173e-07, -9.2944845e-08,  0.0000000e+00], dtype=float32), array([ 1.1845550e-06, -1.6399191e-06,  2.5565218e-06, ...,        -8.7445065e-09,  5.9859917e-09,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([-1.3284328e-05, -7.4090644e-07,  7.2679302e-07, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,         5.0694009e-08, -3.4546797e-08,  0.0000000e+00], dtype=float32), array([ 1.5591205e-07, -1.5845627e-07,  1.5362870e-07, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.1608539e-05,        8.2463991e-09, 0.0000000e+00], dtype=float32), array([-3.6192148e-07, -1.4590451e-05, -5.3999561e-06, ...,        -1.9935460e-05, -3.4417746e-05,  0.0000000e+00], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -2.5319534e-07,  2.6521766e-07,  0.0000000e+00], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -2.5055220e-08,  1.2936166e-08,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([ 1.3387315e-05,  6.0913658e-07, -5.6471418e-07, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([ 1.7200684e-02,  3.2272514e-02,  3.2961801e-02, ...,        -1.6286784e-06, -8.5592075e-07,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -3.3923173e-11,  2.8026699e-11,  0.0000000e+00], dtype=float32), array([-0.00103188, -0.00075814, -0.00051426, ...,  0.        ,         0.        ,  0.        ], dtype=float32), array([ 7.6278877e-07,  2.1624428e-05,  1.1150542e-05, ...,         1.8263392e-09, -1.5558380e-09,  0.0000000e+00], dtype=float32), array([-1.2111740e-07,  6.3130176e-07, -1.8378003e-06, ...,         1.1309878e-05,  5.4562256e-06,  0.0000000e+00], dtype=float32), array([0.00026949, 0.00028119, 0.00020081, ..., 0.00032586, 0.00046612,        0.        ], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -7.8796054e-09,  1.7431153e-08,  0.0000000e+00], dtype=float32), array([1.42000988e-06, 1.30781755e-05, 2.77493709e-05, ...,        0.00000000e+00, 0.00000000e+00, 0.00000000e+00], dtype=float32), array([ 2.9161662e-10, -6.3629275e-11, -3.0565092e-10, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([ 2.2051008e-05,  1.6838792e-05,  3.5639907e-05, ...,         4.5767497e-06, -1.2002213e-05,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -2.0104826e-10,  1.6824393e-10,  0.0000000e+00], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -4.8303300e-06, -1.2008861e-05,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -2.7673337e-07,  2.8604177e-07,  0.0000000e+00], dtype=float32), array([-0.00066044, -0.0009837 , -0.00090796, ..., -0.00171516,        -0.0017666 ,  0.        ], dtype=float32), array([ 3.2218946e-11, -5.5296181e-11,  8.9530647e-11, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([-1.3284328e-05, -7.4090644e-07,  7.2679302e-07, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([ 4.9886359e-05,  1.4642075e-04,  4.4365996e-04, ...,         6.3584002e-07, -6.2395281e-07,  0.0000000e+00], dtype=float32), array([-3.2826196e-04,  4.5522624e-03, -8.2306744e-04, ...,        -2.2519816e-07, -6.2417300e-08,  0.0000000e+00], dtype=float32), array([ 3.1686827e-04,  4.6282235e-04,  1.0160641e-04, ...,        -1.4605960e-05,  6.6572487e-05,  0.0000000e+00], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -7.1763244e-09, -2.8297892e-08,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([-2.5870585e-07,  4.6514080e-07, -9.5607948e-07, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([ 5.788035e-07, -6.493598e-07,  7.111379e-07, ...,  0.000000e+00,         0.000000e+00,  0.000000e+00], dtype=float32), array([ 2.5118000e-04,  1.4220485e-03,  3.9536849e-04, ...,         4.5242754e-04, -3.1405249e-05,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([ 1.1985266e-07,  2.1360799e-07, -1.1951373e-06, ...,        -1.3043609e-04,  1.2107374e-06,  0.0000000e+00], dtype=float32), array([0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 2.5944988e-08,        1.2123945e-07, 0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([-2.4280996e-06, -1.2362683e-05, -8.5034850e-07, ...,        -1.0113516e-11,  5.1403621e-12,  0.0000000e+00], dtype=float32), array([9.6098862e-05, 1.6449913e-04, 1.1942573e-04, ..., 0.0000000e+00,        0.0000000e+00, 0.0000000e+00], dtype=float32), array([ 1.3284328e-05,  7.4090644e-07, -7.2679302e-07, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([ 2.4700081e-05,  2.9454704e-05,  8.0751715e-06, ...,         1.2746801e-07, -1.6574201e-06,  0.0000000e+00], dtype=float32), array([8.4619669e-06, 9.7476968e-06, 2.0182479e-05, ..., 2.1081217e-11,        4.0220186e-10, 0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32))

y如下

('08', '08', '06', '05', '05', '04', '06', '07', '01', '04', '03', '07', '03', '01', '03', '03', '02', '02', '02', '02', '05', '06', '04', '08', '07', '06', '04', '05', '07', '02', '08', '01', '08', '03', '08', '02', '03', '06', '04', '07', '04', '07', '05', '06', '08', '08', '04', '05', '05', '04', '06', '07', '05', '07', '01', '06', '02', '02', '03', '03')

分类器以及训练/测试分割的代码:

from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)from sklearn.tree import DecisionTreeClassifierdtree = DecisionTreeClassifier()dtree.fit(X_train, y_train)

错误:

---------------------------------------------------------------------------ValueError                                Traceback (most recent call last)<ipython-input-70-b6417fbfb8de> in <module>()      1 from sklearn.tree import DecisionTreeClassifier      2 dtree = DecisionTreeClassifier()----> 3 dtree.fit(X_train, y_train)/usr/local/lib/python3.6/dist-packages/sklearn/tree/tree.py in fit(self, X, y, sample_weight, check_input, X_idx_sorted)    788             sample_weight=sample_weight,    789             check_input=check_input,--> 790             X_idx_sorted=X_idx_sorted)    791         return self    792 /usr/local/lib/python3.6/dist-packages/sklearn/tree/tree.py in fit(self, X, y, sample_weight, check_input, X_idx_sorted)    114         random_state = check_random_state(self.random_state)    115         if check_input:--> 116             X = check_array(X, dtype=DTYPE, accept_sparse="csc")    117             y = check_array(y, ensure_2d=False, dtype=None)    118             if issparse(X):/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)    431                                       force_all_finite)    432     else:--> 433         array = np.array(array, dtype=dtype, order=order, copy=copy)    434     435         if ensure_2d:ValueError: setting an array element with a sequence.

EDIT1:我已经将X和y都转换成了numpy数组,但收到的错误仍然相同,详情如下

import numpy as npX = np.asarray(X)y = np.asarray(y)X.shape, y.shape

输出:

((60,), (60,))

回答:

看起来问题出在你的X上。可能构成它的一个数组长度不同,导致你构建的元组在被Scikit-learn处理并转换为Numpy数组时变成了字符串向量,而这不是决策树函数所期望处理的内容。

请查看以下代码片段:

X1 = (array([-8.1530527e-10,  8.9952795e-10, -9.1185753e-10,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype='float32'), array([0., 0., 0., 0., 0., 0.], dtype='float32'), array([0., 0., 0., 0., 0., 0.], dtype='float32'))X2 = (array([-8.1530527e-10,  8.9952795e-10, -9.1185753e-10,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype='float32'), array([0., 0., 0., 0., 0., 0., 1], dtype='float32'), array([0., 0., 0., 0., 0., 0.], dtype='float32'))print("X1:", np.array(X1).dtype, "\nX2:", np.array(X2).dtype)

仅仅通过在X2的第二个元素中添加一个额外的数字,就会导致X2数组变成字符串数组(对象类型)。

Related Posts

在使用k近邻算法时,有没有办法获取被使用的“邻居”?

我想找到一种方法来确定在我的knn算法中实际使用了哪些…

Theano在Google Colab上无法启用GPU支持

我在尝试使用Theano库训练一个模型。由于我的电脑内…

准确性评分似乎有误

这里是代码: from sklearn.metrics…

Keras Functional API: “错误检查输入时:期望input_1具有4个维度,但得到形状为(X, Y)的数组”

我在尝试使用Keras的fit_generator来训…

如何使用sklearn.datasets.make_classification在指定范围内生成合成数据?

我想为分类问题创建合成数据。我使用了sklearn.d…

如何处理预测时不在训练集中的标签

已关闭。 此问题与编程或软件开发无关。目前不接受回答。…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注