在决策树分类器拟合数据集时出现的ValueError

我已经为我正在处理的数据集创建了特征X和标签y。

此时,我想在这个数据集上训练一个随机森林分类器,但在拟合训练数据时遇到了一个ValueError:setting an array element with a sequence.

以下是X和y的特征以及错误详情:

X:

(array([-8.1530527e-10,  8.9952795e-10, -9.1185753e-10, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([-0.00050612, -0.00057967, -0.00035985, ...,  0.        ,         0.        ,  0.        ], dtype=float32), array([ 6.8139506e-08, -2.3837963e-05, -2.4622474e-05, ...,         3.1678758e-06, -2.4535689e-06,  0.0000000e+00], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,         6.9306935e-07, -6.6020442e-07,  0.0000000e+00], dtype=float32), array([-7.30260945e-05, -1.18022966e-04, -1.08280736e-04, ...,         8.83421380e-05,  4.97258679e-06,  0.00000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([ 2.3406714e-05,  3.1186773e-05,  4.9467826e-06, ...,         1.2180173e-07, -9.2944845e-08,  0.0000000e+00], dtype=float32), array([ 1.1845550e-06, -1.6399191e-06,  2.5565218e-06, ...,        -8.7445065e-09,  5.9859917e-09,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([-1.3284328e-05, -7.4090644e-07,  7.2679302e-07, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,         5.0694009e-08, -3.4546797e-08,  0.0000000e+00], dtype=float32), array([ 1.5591205e-07, -1.5845627e-07,  1.5362870e-07, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.1608539e-05,        8.2463991e-09, 0.0000000e+00], dtype=float32), array([-3.6192148e-07, -1.4590451e-05, -5.3999561e-06, ...,        -1.9935460e-05, -3.4417746e-05,  0.0000000e+00], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -2.5319534e-07,  2.6521766e-07,  0.0000000e+00], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -2.5055220e-08,  1.2936166e-08,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([ 1.3387315e-05,  6.0913658e-07, -5.6471418e-07, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([ 1.7200684e-02,  3.2272514e-02,  3.2961801e-02, ...,        -1.6286784e-06, -8.5592075e-07,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -3.3923173e-11,  2.8026699e-11,  0.0000000e+00], dtype=float32), array([-0.00103188, -0.00075814, -0.00051426, ...,  0.        ,         0.        ,  0.        ], dtype=float32), array([ 7.6278877e-07,  2.1624428e-05,  1.1150542e-05, ...,         1.8263392e-09, -1.5558380e-09,  0.0000000e+00], dtype=float32), array([-1.2111740e-07,  6.3130176e-07, -1.8378003e-06, ...,         1.1309878e-05,  5.4562256e-06,  0.0000000e+00], dtype=float32), array([0.00026949, 0.00028119, 0.00020081, ..., 0.00032586, 0.00046612,        0.        ], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -7.8796054e-09,  1.7431153e-08,  0.0000000e+00], dtype=float32), array([1.42000988e-06, 1.30781755e-05, 2.77493709e-05, ...,        0.00000000e+00, 0.00000000e+00, 0.00000000e+00], dtype=float32), array([ 2.9161662e-10, -6.3629275e-11, -3.0565092e-10, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([ 2.2051008e-05,  1.6838792e-05,  3.5639907e-05, ...,         4.5767497e-06, -1.2002213e-05,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -2.0104826e-10,  1.6824393e-10,  0.0000000e+00], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -4.8303300e-06, -1.2008861e-05,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -2.7673337e-07,  2.8604177e-07,  0.0000000e+00], dtype=float32), array([-0.00066044, -0.0009837 , -0.00090796, ..., -0.00171516,        -0.0017666 ,  0.        ], dtype=float32), array([ 3.2218946e-11, -5.5296181e-11,  8.9530647e-11, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([-1.3284328e-05, -7.4090644e-07,  7.2679302e-07, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([ 4.9886359e-05,  1.4642075e-04,  4.4365996e-04, ...,         6.3584002e-07, -6.2395281e-07,  0.0000000e+00], dtype=float32), array([-3.2826196e-04,  4.5522624e-03, -8.2306744e-04, ...,        -2.2519816e-07, -6.2417300e-08,  0.0000000e+00], dtype=float32), array([ 3.1686827e-04,  4.6282235e-04,  1.0160641e-04, ...,        -1.4605960e-05,  6.6572487e-05,  0.0000000e+00], dtype=float32), array([ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,        -7.1763244e-09, -2.8297892e-08,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([-2.5870585e-07,  4.6514080e-07, -9.5607948e-07, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([ 5.788035e-07, -6.493598e-07,  7.111379e-07, ...,  0.000000e+00,         0.000000e+00,  0.000000e+00], dtype=float32), array([ 2.5118000e-04,  1.4220485e-03,  3.9536849e-04, ...,         4.5242754e-04, -3.1405249e-05,  0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([ 1.1985266e-07,  2.1360799e-07, -1.1951373e-06, ...,        -1.3043609e-04,  1.2107374e-06,  0.0000000e+00], dtype=float32), array([0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 2.5944988e-08,        1.2123945e-07, 0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), array([-2.4280996e-06, -1.2362683e-05, -8.5034850e-07, ...,        -1.0113516e-11,  5.1403621e-12,  0.0000000e+00], dtype=float32), array([9.6098862e-05, 1.6449913e-04, 1.1942573e-04, ..., 0.0000000e+00,        0.0000000e+00, 0.0000000e+00], dtype=float32), array([ 1.3284328e-05,  7.4090644e-07, -7.2679302e-07, ...,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), array([ 2.4700081e-05,  2.9454704e-05,  8.0751715e-06, ...,         1.2746801e-07, -1.6574201e-06,  0.0000000e+00], dtype=float32), array([8.4619669e-06, 9.7476968e-06, 2.0182479e-05, ..., 2.1081217e-11,        4.0220186e-10, 0.0000000e+00], dtype=float32), array([0., 0., 0., ..., 0., 0., 0.], dtype=float32))

y如下

('08', '08', '06', '05', '05', '04', '06', '07', '01', '04', '03', '07', '03', '01', '03', '03', '02', '02', '02', '02', '05', '06', '04', '08', '07', '06', '04', '05', '07', '02', '08', '01', '08', '03', '08', '02', '03', '06', '04', '07', '04', '07', '05', '06', '08', '08', '04', '05', '05', '04', '06', '07', '05', '07', '01', '06', '02', '02', '03', '03')

分类器以及训练/测试分割的代码:

from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)from sklearn.tree import DecisionTreeClassifierdtree = DecisionTreeClassifier()dtree.fit(X_train, y_train)

错误:

---------------------------------------------------------------------------ValueError                                Traceback (most recent call last)<ipython-input-70-b6417fbfb8de> in <module>()      1 from sklearn.tree import DecisionTreeClassifier      2 dtree = DecisionTreeClassifier()----> 3 dtree.fit(X_train, y_train)/usr/local/lib/python3.6/dist-packages/sklearn/tree/tree.py in fit(self, X, y, sample_weight, check_input, X_idx_sorted)    788             sample_weight=sample_weight,    789             check_input=check_input,--> 790             X_idx_sorted=X_idx_sorted)    791         return self    792 /usr/local/lib/python3.6/dist-packages/sklearn/tree/tree.py in fit(self, X, y, sample_weight, check_input, X_idx_sorted)    114         random_state = check_random_state(self.random_state)    115         if check_input:--> 116             X = check_array(X, dtype=DTYPE, accept_sparse="csc")    117             y = check_array(y, ensure_2d=False, dtype=None)    118             if issparse(X):/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)    431                                       force_all_finite)    432     else:--> 433         array = np.array(array, dtype=dtype, order=order, copy=copy)    434     435         if ensure_2d:ValueError: setting an array element with a sequence.

EDIT1:我已经将X和y都转换成了numpy数组,但收到的错误仍然相同,详情如下

import numpy as npX = np.asarray(X)y = np.asarray(y)X.shape, y.shape

输出:

((60,), (60,))

回答:

看起来问题出在你的X上。可能构成它的一个数组长度不同,导致你构建的元组在被Scikit-learn处理并转换为Numpy数组时变成了字符串向量,而这不是决策树函数所期望处理的内容。

请查看以下代码片段:

X1 = (array([-8.1530527e-10,  8.9952795e-10, -9.1185753e-10,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype='float32'), array([0., 0., 0., 0., 0., 0.], dtype='float32'), array([0., 0., 0., 0., 0., 0.], dtype='float32'))X2 = (array([-8.1530527e-10,  8.9952795e-10, -9.1185753e-10,         0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype='float32'), array([0., 0., 0., 0., 0., 0., 1], dtype='float32'), array([0., 0., 0., 0., 0., 0.], dtype='float32'))print("X1:", np.array(X1).dtype, "\nX2:", np.array(X2).dtype)

仅仅通过在X2的第二个元素中添加一个额外的数字,就会导致X2数组变成字符串数组(对象类型)。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注