我使用了一个从互联网上下载的非常简单的CSV文件,文件只有两列。第一列是“MonthsExperience”,数据类似于“3, 3, 4, 4, 5, 6…”,第二列类似于“424, 387, 555, 59, 533…”。
我试图对RandomForestRegressor模型进行训练,并获取其在简单线性回归上的cross_val_score。
这是我的代码:
import numpy as np
import pandas as pd
data = pd.read_csv("Blogging_Income.csv")
X = data["MonthsExperience"]
y = data["Income"]
from sklearn.ensemble import RandomForestRegressor
rfr = RandomForestRegressor()
from sklearn.model_selection import cross_val_score
cv_r2 = cross_val_score(rfr, X, y, cv = 5, scoring = None)
print(cv_r2)
我收到了来自sklearn的一个很长的白色警告,指出所有的结果都变成了NaN,因为模型无法拟合。我收到的警告/错误的上半部分如下:
[nan nan nan nan nan]
C:\Users\----\anaconda3\lib\site-packages\sklearn\model_selection\_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "C:\Users\----\anaconda3\lib\site-packages\sklearn\model_selection\_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\----\anaconda3\lib\site-packages\sklearn\ensemble\_forest.py", line 304, in fit
X, y = self._validate_data(X, y, multi_output=True,
File "C:\Users\----\anaconda3\lib\site-packages\sklearn\base.py", line 433, in _validate_data
X, y = check_X_y(X, y, **check_params)
File "C:\Users\----\anaconda3\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
return f(*args, **kwargs)
File "C:\Users\----\anaconda3\lib\site-packages\sklearn\utils\validation.py", line 871, in check_X_y
X = check_array(X, accept_sparse=accept_sparse,
File "C:\Users\----\anaconda3\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
return f(*args, **kwargs)
File "C:\Users\----\anaconda3\lib\site-packages\sklearn\utils\validation.py", line 694, in check_array
raise ValueError
ValueError: Expected 2D array, got 1D array instead:
array=[ 6. 6. 7. 8. 8. 9. 9. 10. 11. 11. 12. 12. 12. 13. 13. 14. 14. 15. 15. 16. 16. 17. 18. 18.].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
看起来数组的形状不对,但我不知道为什么。我也不明白如何使用array.reshape来解决这个问题。
回答:
RandomForest与其他任何机器学习模型一样,要求你的数据是二维的。即使你只有一个特征,你的X也必须是N x 1,而不是长度为N的向量。
你可以使用numpy来重塑你的数据
X = np.array(X).reshape(-1, 1)