我刚开始学习迁移学习,正在进行两个类别的图像分类工作。我使用的是 InceptionV3 来对这些图像进行分类。我的数据格式为 .jpg,文件夹结构如下。由于我有两个类别,所以我使用了 “binary_crossentropy”,但遇到了问题。
父文件夹/train/类别1
父文件夹/train/类别2父文件夹/test/类别1
父文件夹/test/类别2
from keras.applications.inception_v3 import InceptionV3from keras.preprocessing import imagefrom keras.models import Modelfrom keras.layers import Dense, GlobalAveragePooling2Dfrom keras import backend as K# 创建预训练的基础模型base_model = InceptionV3(weights='imagenet', include_top=False)# 添加全局空间平均池化层x = base_model.outputx = GlobalAveragePooling2D()(x)# 添加一个全连接层x = Dense(1024, activation='relu')(x)x = Dense(512, activation='relu')(x)x = Dense(32, activation='relu')(x)# 添加一个逻辑层 -- 我们有2个类别predictions = Dense(2, activation='softmax')(x)# 这是我们要训练的模型model = Model(inputs=base_model.input, outputs=predictions)for layer in base_model.layers: layer.trainable = False# 我们选择训练顶部的两个 Inception 块,即我们将冻结# 前249层并解冻其余部分:for layer in model.layers[:249]: layer.trainable = Falsefor layer in model.layers[249:]: layer.trainable = Truemodel.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])from keras.preprocessing.image import ImageDataGeneratortrain_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)test_datagen = ImageDataGenerator(rescale=1./255)training_set = train_datagen.flow_from_directory( 'C:/Users/Desktop/Transfer/train/', target_size=(64, 64), batch_size=5, class_mode='binary')test_set = test_datagen.flow_from_directory( 'C:/Users/Desktop/Transfer/test/', target_size=(64, 64), batch_size=5, class_mode='binary')model.fit_generator( training_set, steps_per_epoch=1000, epochs=10, validation_data=test_set, validation_steps=100)
回答:
替换这一行
predictions = Dense(2, activation='softmax')(x)
为:
predictions = Dense(1, activation='sigmoid')(x)
或者将你的目标编码成列,例如 [1,0,1]
等同于 [[0,1],[1,0],[0,1]]