我在使用Python的sklearn
库测试一个情感分析分类器时,获得了异常高的准确率。这通常意味着存在某种训练数据泄露,但我无法确定是否真是如此。
我的数据集包含大约5万条非重复的IMDB评论。
import pandas as pdimport sklearnfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.feature_extraction.text import TfidfTransformerfrom sklearn.feature_extraction.text import CountVectorizerfrom sklearn.linear_model import SGDClassifierfrom sklearn.model_selection import GridSearchCVfrom sklearn.pipeline import Pipelinefrom pprint import pprintfrom time import timefrom sklearn.metrics import classification_report,confusion_matrix,accuracy_score, roc_curve, auc, plot_confusion_matriximport matplotlib.pyplot as pltfrom sklearn.model_selection import train_test_splitx_train, x_test, y_train, y_test = train_test_split(imdb_data.text, imdb_data.label, test_size=0.30, random_state=2)imdb_data=pd.read_csv('../../data/home/data/tm/en-sentiment/imdb_reviews_train.csv')imdb_data=imdb_data.drop_duplicates().reset_index(drop=True)imdb_data['label'] = imdb_data.label.map(lambda x: int(1) if x =='pos' else int(0) if x =='neg' else np.nan)x_train, x_test, y_train, y_test = train_test_split(imdb_data.text, imdb_data.label, test_size=0.30, random_state=2)pipeline = Pipeline([ ('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', SGDClassifier()),])parameters_final = { 'vect__max_df': [0.3], 'vect__min_df': [1], 'vect__max_features': [None], 'vect__ngram_range': [(1, 2)], 'tfidf__use_idf': (True, False), 'tfidf__norm': ['l2'], 'tfidf__sublinear_tf': (True, False), 'clf__alpha': (0.00001, 0.000001), 'clf__penalty': ['elasticnet'], 'clf__max_iter': [50],}grid_search = GridSearchCV(pipeline, parameters_final, n_jobs=-1, verbose=1, cv=3)grid_search.fit(x_train, y_train)y_pred = grid_search.predict(x_test)print("Accuracy: ", sklearn.metrics.accuracy_score(y_true=y_test, y_pred=y_pred))
输出:
Accuracy: 0.8967533466687183
评论数据集可以在这里找到
有什么线索吗?
回答:
测试是否存在数据泄露的一个好方法是检查你链接的存储库中的验证集的表现,在这里。
我下载了数据集,并尝试构建一个像这样的朴素贝叶斯分类器的管道:
pipeline = Pipeline([ ('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', MultinomialNB()),])
使用你相同的训练-测试分割,我在训练集的保留数据上获得了0.86的准确率,在验证集上获得了0.83的准确率。如果你得到类似的结果,我认为可能只是这个数据集并不太难学习。我检查了是否有任何可能导致奇怪表现的NA
值,但imdb_data.isnull().any()
确实返回了false。