我想在Hadoop中按列计算均值和标准差。
我简单地采用了单遍的Naïve算法来实现MapReduce。我在455000×90和650000×120的多变量数据集上进行了测试,发现加速比低于处理器数量。对于独立和伪分布式模式下使用2个活动核心,我在455000×90数据集上得到了0.4的加速比,即20秒/53秒。
为什么我的程序效率不高?是否有可能改进它?
Mapper:
public class CalculateMeanAndSTDEVMapper extends Mapper <LongWritable, DoubleArrayWritable, IntWritable, DoubleArrayWritable> { private int dataDimFrom; private int dataDimTo; private long samplesCount; private int universeSize;@Overrideprotected void setup(Context context) throws IOException { Configuration conf = context.getConfiguration(); dataDimFrom = conf.getInt("dataDimFrom", 0); dataDimTo = conf.getInt("dataDimTo", 0); samplesCount = conf.getLong("samplesCount", 0); universeSize = dataDimTo - dataDimFrom + 1;}@Overridepublic void map( LongWritable key, DoubleArrayWritable array, Context context) throws IOException, InterruptedException { DoubleWritable[] outArray = new DoubleWritable[universeSize*2]; for (int c = 0; c < universeSize; c++) { outArray[c] = new DoubleWritable( array.get(c+dataDimFrom).get() / samplesCount); } for (int c = universeSize; c < universeSize*2; c++) { double val = array.get(c-universeSize+dataDimFrom).get(); outArray[c] = new DoubleWritable((val*val) / samplesCount); } context.write(new IntWritable(1), new DoubleArrayWritable(outArray));}}
Combiner:
public class CalculateMeanAndSTDEVCombiner extends Reducer <IntWritable, DoubleArrayWritable, IntWritable, DoubleArrayWritable> { private int dataDimFrom; private int dataDimTo; private int universeSize;@Overrideprotected void setup(Context context) throws IOException { Configuration conf = context.getConfiguration(); dataDimFrom = conf.getInt("dataDimFrom", 0); dataDimTo = conf.getInt("dataDimTo", 0); universeSize = dataDimTo - dataDimFrom + 1;}@Overridepublic void reduce( IntWritable column, Iterable<DoubleArrayWritable> partialSums, Context context) throws IOException, InterruptedException { DoubleWritable[] outArray = new DoubleWritable[universeSize*2]; boolean isFirst = true; for (DoubleArrayWritable partialSum : partialSums) { for (int i = 0; i < universeSize*2; i++) { if (!isFirst) { outArray[i].set(outArray[i].get() + partialSum.get(i).get()); } else { outArray[i] = new DoubleWritable(partialSum.get(i).get()); } } isFirst = false; } context.write(column, new DoubleArrayWritable(outArray));}}
Reducer:
public class CalculateMeanAndSTDEVReducer extends Reducer <IntWritable, DoubleArrayWritable, IntWritable, DoubleArrayWritable> { private int dataDimFrom; private int dataDimTo; private int universeSize;@Overrideprotected void setup(Context context) throws IOException { Configuration conf = context.getConfiguration(); dataDimFrom = conf.getInt("dataDimFrom", 0); dataDimTo = conf.getInt("dataDimTo", 0); universeSize = dataDimTo - dataDimFrom + 1;}@Overridepublic void reduce( IntWritable column, Iterable<DoubleArrayWritable> partialSums, Context context) throws IOException, InterruptedException { DoubleWritable[] outArray = new DoubleWritable[universeSize*2]; boolean isFirst = true; for (DoubleArrayWritable partialSum : partialSums) { for (int i = 0; i < universeSize; i++) { if (!isFirst) { outArray[i].set(outArray[i].get() + partialSum.get(i).get()); } else { outArray[i] = new DoubleWritable(partialSum.get(i).get()); } } isFirst = false; } for (int i = universeSize; i < universeSize * 2; i++) { double mean = outArray[i-universeSize].get(); outArray[i].set(Math.sqrt(outArray[i].get() - mean*mean)); } context.write(column, new DoubleArrayWritable(outArray));}}
其中DoubleArrayWritable是一个简单的类,它继承自ArrayWritable:
public class DoubleArrayWritable extends ArrayWritable {public DoubleArrayWritable() { super(DoubleWritable.class);}public DoubleArrayWritable(DoubleWritable[] values) { super(DoubleWritable.class, values);}public DoubleWritable get(int idx) { return (DoubleWritable) get()[idx];}}
回答:
我在相同环境下关于另一个作业提出了相同的问题。David Gruzman猜测问题出在作业启动时间的差异(本地,集群)。他建议在该环境下看到良好加速的最佳数据大小为5 GB。我尝试了,确实如此。