在调用LogisticRegressionModelWithLBFGS.train时出现Py4JavaError

我有一个包含5000行和401列的训练集,其中第一列是标签,剩下的400列是特征。我正在尝试使用pyspark mllib进行多类逻辑回归。请查看我的代码。我必须承认,这不是一个优化或编写良好的代码,因为我在Python/pyspark领域还是一个新手。

tset=sio.loadmat('ex3data1.mat') # 从mat文件中加载训练集X=tset['X']                      # 读取X,y值y=tset['y']print(X.shape) # 有效!print(y.shape)sp= SparkSession.builder.master("local").appName("multiclassifier").getOrCreate()sc=sp.sparkContextXY=np.concatenate((y,X),axis=1) # 5000x401,其中第一列是标签print(XY[0:2])

上述打印的样本输出。请注意,我只打印了第一行

[[  1.00000000e+01   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    8.56059680e-06   1.94035948e-06  -7.37438725e-04  -8.13403799e-03   -1.86104473e-02  -1.87412865e-02  -1.87572508e-02  -1.90963542e-02   -1.64039011e-02  -3.78191381e-03   3.30347316e-04   1.27655229e-05    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   1.16421569e-04    1.20052179e-04  -1.40444581e-02  -2.84542484e-02   8.03826593e-02    2.66540339e-01   2.73853746e-01   2.78729541e-01   2.74293607e-01    2.24676403e-01   2.77562977e-02  -7.06315478e-03   2.34715414e-04    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   1.28335523e-17  -3.26286765e-04   -1.38651604e-02   8.15651552e-02   3.82800381e-01   8.57849775e-01    1.00109761e+00   9.69710638e-01   9.30928598e-01   1.00383757e+00    9.64157356e-01   4.49256553e-01  -5.60408259e-03  -3.78319036e-03    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    5.10620915e-06   4.36410675e-04  -3.95509940e-03  -2.68537241e-02    1.00755014e-01   6.42031710e-01   1.03136838e+00   8.50968614e-01    5.43122379e-01   3.42599738e-01   2.68918777e-01   6.68374643e-01    1.01256958e+00   9.03795598e-01   1.04481574e-01  -1.66424973e-02    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    2.59875260e-05  -3.10606987e-03   7.52456076e-03   1.77539831e-01    7.92890120e-01   9.65626503e-01   4.63166079e-01   6.91720680e-02   -3.64100526e-03  -4.12180405e-02  -5.01900656e-02   1.56102907e-01    9.01762651e-01   1.04748346e+00   1.51055252e-01  -2.16044665e-02    0.00000000e+00   0.00000000e+00   0.00000000e+00   5.87012352e-05   -6.40931373e-04  -3.23305249e-02   2.78203465e-01   9.36720163e-01    1.04320956e+00   5.98003217e-01  -3.59409041e-03  -2.16751770e-02   -4.81021923e-03   6.16566793e-05  -1.23773318e-02   1.55477482e-01    9.14867477e-01   9.20401348e-01   1.09173902e-01  -1.71058007e-02    0.00000000e+00   0.00000000e+00   1.56250000e-04  -4.27724104e-04   -2.51466503e-02   1.30532561e-01   7.81664862e-01   1.02836583e+00    7.57137601e-01   2.84667194e-01   4.86865128e-03  -3.18688725e-03    0.00000000e+00   8.36492601e-04  -3.70751123e-02   4.52644165e-01    1.03180133e+00   5.39028101e-01  -2.43742611e-03  -4.80290033e-03    0.00000000e+00   0.00000000e+00  -7.03635621e-04  -1.27262443e-02    1.61706648e-01   7.79865383e-01   1.03676705e+00   8.04490400e-01    1.60586724e-01  -1.38173339e-02   2.14879493e-03  -2.12622549e-04    2.04248366e-04  -6.85907627e-03   4.31712963e-04   7.20680947e-01    8.48136063e-01   1.51383408e-01  -2.28404366e-02   1.98971950e-04    0.00000000e+00   0.00000000e+00  -9.40410539e-03   3.74520505e-02    6.94389110e-01   1.02844844e+00   1.01648066e+00   8.80488426e-01    3.92123945e-01  -1.74122413e-02  -1.20098039e-04   5.55215142e-05   -2.23907271e-03  -2.76068376e-02   3.68645493e-01   9.36411169e-01    4.59006723e-01  -4.24701797e-02   1.17356610e-03   1.88929739e-05    0.00000000e+00   0.00000000e+00  -1.93511951e-02   1.29999794e-01    9.79821705e-01   9.41862388e-01   7.75147704e-01   8.73632241e-01    2.12778350e-01  -1.72353349e-02   0.00000000e+00   1.09937426e-03   -2.61793751e-02   1.22872879e-01   8.30812662e-01   7.26501773e-01    5.24441863e-02  -6.18971913e-03   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00  -9.36563862e-03   3.68349741e-02    6.99079299e-01   1.00293583e+00   6.05704402e-01   3.27299224e-01   -3.22099249e-02  -4.83053002e-02  -4.34069138e-02  -5.75151144e-02    9.55674190e-02   7.26512627e-01   6.95366966e-01   1.47114481e-01   -1.20048679e-02  -3.02798203e-04   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00  -6.76572712e-04  -6.51415556e-03    1.17339359e-01   4.21948410e-01   9.93210937e-01   8.82013974e-01    7.45758734e-01   7.23874268e-01   7.23341725e-01   7.20020340e-01    8.45324959e-01   8.31859739e-01   6.88831870e-02  -2.77765012e-02    3.59136710e-04   7.14869281e-05   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   1.53186275e-04   3.17353553e-04   -2.29167177e-02  -4.14402914e-03   3.87038450e-01   5.04583435e-01    7.74885876e-01   9.90037446e-01   1.00769478e+00   1.00851440e+00    7.37905042e-01   2.15455291e-01  -2.69624864e-02   1.32506127e-03    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    2.36366422e-04  -2.26031454e-03  -2.51994485e-02  -3.73889910e-02    6.62121228e-02   2.91134498e-01   3.23055726e-01   3.06260315e-01    8.76070942e-02  -2.50581917e-02   2.37438725e-04   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   6.20939216e-18   6.72618320e-04   -1.13151411e-02  -3.54641066e-02  -3.88214912e-02  -3.71077412e-02   -1.33524928e-02   9.90964718e-04   4.89176960e-05   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00    0.00000000e+00]]

打印输出结束。

pXYdf=pd.DataFrame(XY)sXYdf=sp.createDataFrame(pXYdf)from pyspark.mllib.classification import LogisticRegressionWithLBFGS, LogisticRegressionModelimport pyspark.mllib.regression as regtrainingData = sXYdf.rdd.map(lambda x: reg.LabeledPoint(x[0],x[1:]))trainingData.take(2) # 有效!!

LabeledPoint格式的一条记录的输出:(我无法在这里正确格式化,因为这里有400个特征)

[LabeledPoint(10.0,[0.0,0.0,0.0,0.0,0.0,0.0,....,8.56059679589e-06, 1.94035947712e06,.........]),lrm=LogisticRegressionWithLBFGS.train(trainingData)

我得到了以下错误:

Py4JJavaError: An error occurred while calling o168.trainLogisticRegressionModelWithLBFGS. : org.apache.spark.SparkException: Multinomial models contain a matrix of coefficients, use coefficientMatrix instead.[...]

回答:

对于多类分类,LogisticRegressionWithLBFGS 需要提供类别数量参数numClasses,而你没有提供这个参数。

在提问时,提供数据样本总是有益的;由于你没有提供,这里是我尝试用自己的虚拟数据重现你的错误:

from pyspark.mllib.classification import LogisticRegressionWithLBFGS, LogisticRegressionModelfrom pyspark.mllib.regression import LabeledPointparsed_data = [LabeledPoint(0, [4.6,3.6,1.0,0.2]),  # 3个类别                LabeledPoint(0, [5.7,4.4,1.5,0.4]),                LabeledPoint(1, [6.7,3.1,4.4,1.4]),                LabeledPoint(2, [4.8,3.4,1.6,0.2]),                LabeledPoint(1, [4.4,3.2,1.3,0.2])]model = LogisticRegressionWithLBFGS.train(sc.parallelize(parsed_data)) # 这将重现你的错误:[...]Py4JJavaError: An error occurred while calling o168.trainLogisticRegressionModelWithLBFGS. : org.apache.spark.SparkException: Multinomial models contain a matrix of coefficients, use coefficientMatrix instead.[...]# 设置numClasses=3:model = LogisticRegressionWithLBFGS.train(sc.parallelize(parsed_data), numClasses=3) # 正常工作

(已在Spark 2.1.1上测试)

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注