我有一个包含5000行和401列的训练集,其中第一列是标签,剩下的400列是特征。我正在尝试使用pyspark mllib进行多类逻辑回归。请查看我的代码。我必须承认,这不是一个优化或编写良好的代码,因为我在Python/pyspark领域还是一个新手。
tset=sio.loadmat('ex3data1.mat') # 从mat文件中加载训练集X=tset['X'] # 读取X,y值y=tset['y']print(X.shape) # 有效!print(y.shape)sp= SparkSession.builder.master("local").appName("multiclassifier").getOrCreate()sc=sp.sparkContextXY=np.concatenate((y,X),axis=1) # 5000x401,其中第一列是标签print(XY[0:2])
上述打印的样本输出。请注意,我只打印了第一行
[[ 1.00000000e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.56059680e-06 1.94035948e-06 -7.37438725e-04 -8.13403799e-03 -1.86104473e-02 -1.87412865e-02 -1.87572508e-02 -1.90963542e-02 -1.64039011e-02 -3.78191381e-03 3.30347316e-04 1.27655229e-05 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.16421569e-04 1.20052179e-04 -1.40444581e-02 -2.84542484e-02 8.03826593e-02 2.66540339e-01 2.73853746e-01 2.78729541e-01 2.74293607e-01 2.24676403e-01 2.77562977e-02 -7.06315478e-03 2.34715414e-04 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.28335523e-17 -3.26286765e-04 -1.38651604e-02 8.15651552e-02 3.82800381e-01 8.57849775e-01 1.00109761e+00 9.69710638e-01 9.30928598e-01 1.00383757e+00 9.64157356e-01 4.49256553e-01 -5.60408259e-03 -3.78319036e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.10620915e-06 4.36410675e-04 -3.95509940e-03 -2.68537241e-02 1.00755014e-01 6.42031710e-01 1.03136838e+00 8.50968614e-01 5.43122379e-01 3.42599738e-01 2.68918777e-01 6.68374643e-01 1.01256958e+00 9.03795598e-01 1.04481574e-01 -1.66424973e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.59875260e-05 -3.10606987e-03 7.52456076e-03 1.77539831e-01 7.92890120e-01 9.65626503e-01 4.63166079e-01 6.91720680e-02 -3.64100526e-03 -4.12180405e-02 -5.01900656e-02 1.56102907e-01 9.01762651e-01 1.04748346e+00 1.51055252e-01 -2.16044665e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.87012352e-05 -6.40931373e-04 -3.23305249e-02 2.78203465e-01 9.36720163e-01 1.04320956e+00 5.98003217e-01 -3.59409041e-03 -2.16751770e-02 -4.81021923e-03 6.16566793e-05 -1.23773318e-02 1.55477482e-01 9.14867477e-01 9.20401348e-01 1.09173902e-01 -1.71058007e-02 0.00000000e+00 0.00000000e+00 1.56250000e-04 -4.27724104e-04 -2.51466503e-02 1.30532561e-01 7.81664862e-01 1.02836583e+00 7.57137601e-01 2.84667194e-01 4.86865128e-03 -3.18688725e-03 0.00000000e+00 8.36492601e-04 -3.70751123e-02 4.52644165e-01 1.03180133e+00 5.39028101e-01 -2.43742611e-03 -4.80290033e-03 0.00000000e+00 0.00000000e+00 -7.03635621e-04 -1.27262443e-02 1.61706648e-01 7.79865383e-01 1.03676705e+00 8.04490400e-01 1.60586724e-01 -1.38173339e-02 2.14879493e-03 -2.12622549e-04 2.04248366e-04 -6.85907627e-03 4.31712963e-04 7.20680947e-01 8.48136063e-01 1.51383408e-01 -2.28404366e-02 1.98971950e-04 0.00000000e+00 0.00000000e+00 -9.40410539e-03 3.74520505e-02 6.94389110e-01 1.02844844e+00 1.01648066e+00 8.80488426e-01 3.92123945e-01 -1.74122413e-02 -1.20098039e-04 5.55215142e-05 -2.23907271e-03 -2.76068376e-02 3.68645493e-01 9.36411169e-01 4.59006723e-01 -4.24701797e-02 1.17356610e-03 1.88929739e-05 0.00000000e+00 0.00000000e+00 -1.93511951e-02 1.29999794e-01 9.79821705e-01 9.41862388e-01 7.75147704e-01 8.73632241e-01 2.12778350e-01 -1.72353349e-02 0.00000000e+00 1.09937426e-03 -2.61793751e-02 1.22872879e-01 8.30812662e-01 7.26501773e-01 5.24441863e-02 -6.18971913e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 -9.36563862e-03 3.68349741e-02 6.99079299e-01 1.00293583e+00 6.05704402e-01 3.27299224e-01 -3.22099249e-02 -4.83053002e-02 -4.34069138e-02 -5.75151144e-02 9.55674190e-02 7.26512627e-01 6.95366966e-01 1.47114481e-01 -1.20048679e-02 -3.02798203e-04 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 -6.76572712e-04 -6.51415556e-03 1.17339359e-01 4.21948410e-01 9.93210937e-01 8.82013974e-01 7.45758734e-01 7.23874268e-01 7.23341725e-01 7.20020340e-01 8.45324959e-01 8.31859739e-01 6.88831870e-02 -2.77765012e-02 3.59136710e-04 7.14869281e-05 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.53186275e-04 3.17353553e-04 -2.29167177e-02 -4.14402914e-03 3.87038450e-01 5.04583435e-01 7.74885876e-01 9.90037446e-01 1.00769478e+00 1.00851440e+00 7.37905042e-01 2.15455291e-01 -2.69624864e-02 1.32506127e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.36366422e-04 -2.26031454e-03 -2.51994485e-02 -3.73889910e-02 6.62121228e-02 2.91134498e-01 3.23055726e-01 3.06260315e-01 8.76070942e-02 -2.50581917e-02 2.37438725e-04 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.20939216e-18 6.72618320e-04 -1.13151411e-02 -3.54641066e-02 -3.88214912e-02 -3.71077412e-02 -1.33524928e-02 9.90964718e-04 4.89176960e-05 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]]
打印输出结束。
pXYdf=pd.DataFrame(XY)sXYdf=sp.createDataFrame(pXYdf)from pyspark.mllib.classification import LogisticRegressionWithLBFGS, LogisticRegressionModelimport pyspark.mllib.regression as regtrainingData = sXYdf.rdd.map(lambda x: reg.LabeledPoint(x[0],x[1:]))trainingData.take(2) # 有效!!
LabeledPoint格式的一条记录的输出:(我无法在这里正确格式化,因为这里有400个特征)
[LabeledPoint(10.0,[0.0,0.0,0.0,0.0,0.0,0.0,....,8.56059679589e-06, 1.94035947712e06,.........]),lrm=LogisticRegressionWithLBFGS.train(trainingData)
我得到了以下错误:
Py4JJavaError: An error occurred while calling o168.trainLogisticRegressionModelWithLBFGS. : org.apache.spark.SparkException: Multinomial models contain a matrix of coefficients, use coefficientMatrix instead.[...]
回答:
对于多类分类,LogisticRegressionWithLBFGS
需要提供类别数量参数numClasses
,而你没有提供这个参数。
在提问时,提供数据样本总是有益的;由于你没有提供,这里是我尝试用自己的虚拟数据重现你的错误:
from pyspark.mllib.classification import LogisticRegressionWithLBFGS, LogisticRegressionModelfrom pyspark.mllib.regression import LabeledPointparsed_data = [LabeledPoint(0, [4.6,3.6,1.0,0.2]), # 3个类别 LabeledPoint(0, [5.7,4.4,1.5,0.4]), LabeledPoint(1, [6.7,3.1,4.4,1.4]), LabeledPoint(2, [4.8,3.4,1.6,0.2]), LabeledPoint(1, [4.4,3.2,1.3,0.2])]model = LogisticRegressionWithLBFGS.train(sc.parallelize(parsed_data)) # 这将重现你的错误:[...]Py4JJavaError: An error occurred while calling o168.trainLogisticRegressionModelWithLBFGS. : org.apache.spark.SparkException: Multinomial models contain a matrix of coefficients, use coefficientMatrix instead.[...]# 设置numClasses=3:model = LogisticRegressionWithLBFGS.train(sc.parallelize(parsed_data), numClasses=3) # 正常工作
(已在Spark 2.1.1上测试)