在尝试运行Keras的Sequential模型时出现ValueError

我正在尝试使用Keras构建一个NARX神经网络。我对LSTM神经元中参数return_sequence=True的使用还不完全确定,但在我检查这个问题之前,我需要让代码先运行起来。当我尝试运行它时,收到了以下消息:

ValueError: Error when checking input: expected lstm_84_input to have 3 dimensions, but got array with shape (6686, 3)

请查看下面的代码。错误是在运行model.fit命令时引发的。我的数据形状为40101个时间步 x 6个特征(3个外生输入,3个系统响应)。

import numpy as npimport pandas as pdfrom sklearn.model_selection import TimeSeriesSplitimport tensorflow as tffrom tensorflow.keras import initializers# --- maindata = pd.read_excel('example.xlsx',usecols=['wave','wind','current','X','Y','RZ'])data.plot(subplots=True, figsize=[15,10])x_data = np.array(data.loc[:,['wave','wind','current']])y_data = np.array(data.loc[:,['X','Y','RZ']])timeSeriesCrossValidation = TimeSeriesSplit(n_splits=5)for train, validation in timeSeriesCrossValidation.split(x_data, y_data):      # create model    model = tf.keras.models.Sequential()        # input layer    model.add(tf.keras.layers.LSTM(units=50,                                   input_shape=(40101,3),                                   dropout=0.01,                                   recurrent_dropout=0.2,                                   kernel_initializer=initializers.RandomNormal(mean=0,stddev=.5),                                   bias_initializer=initializers.Zeros(),                                   return_sequences = True))        # 1st hidden layer    model.add(tf.keras.layers.LSTM(units=50,                                   dropout=0.01,                                   recurrent_dropout=0.2,                                   kernel_initializer=initializers.RandomNormal(mean=0,stddev=.5),                                   bias_initializer=initializers.Zeros(),                                   return_sequences = True))        # 2nd hidder layer    model.add(tf.keras.layers.LSTM(units=50,                                   dropout=0.01,                                   recurrent_dropout=0.2,                                   kernel_initializer=initializers.RandomNormal(mean=0,stddev=.5),                                   bias_initializer=initializers.Zeros(),                                   return_sequences = False))        # output layer    model.add(tf.keras.layers.Dense(3))        model.compile(loss='mse',optimizer='nadam',metrics=['accuracy'])    model.fit(x_data[train], y_data[train],              verbose=2,              batch_size=None,              epochs=10,              validation_data=(x_data[validation], y_data[validation])              #callbacks=early_stop              )        prediction = model.predict(x_data[validation])    y_validation = y_data[validation]

回答:

LSTM层需要三维的输入:

(n_samples, time_steps, features)

您传递的数据格式为:

(n_samples, features)

由于您没有创建时间步的函数,最简单的解决方案是将输入形状更改为:

(40101, 1, 3)

伪数据示例:

x_data = np.random.rand(40101, 1, 3)y_data = np.random.rand(40101, 3)

此外,您不应该在Keras层的input_shape参数中传递样本数量。请使用以下格式:

input_shape=(1, 3)

因此,这里是修正后的代码(使用伪数据):

import numpy as npfrom sklearn.model_selection import TimeSeriesSplitimport tensorflow as tffrom tensorflow.keras import initializersfrom tensorflow.keras.layers import *x_data = np.random.rand(40101, 1, 3)y_data = np.random.rand(40101, 3)timeSeriesCrossValidation = TimeSeriesSplit(n_splits=5)for train, validation in timeSeriesCrossValidation.split(x_data, y_data):    # create model    model = tf.keras.models.Sequential()    # input layer    model.add(LSTM(units=5,                   input_shape=(1, 3),                   dropout=0.01,                   recurrent_dropout=0.2,                   kernel_initializer=initializers.RandomNormal(mean=0, stddev=.5),                   bias_initializer=initializers.Zeros(),                   return_sequences=True))    # 1st hidden layer    model.add(LSTM(units=5,                   dropout=0.01,                   recurrent_dropout=0.2,                   kernel_initializer=initializers.RandomNormal(mean=0, stddev=.5),                   bias_initializer=initializers.Zeros(),                   return_sequences=True))    # 2nd hidder layer    model.add(LSTM(units=50,                   dropout=0.01,                   recurrent_dropout=0.2,                   kernel_initializer=initializers.RandomNormal(mean=0, stddev=.5),                   bias_initializer=initializers.Zeros(),                   return_sequences=False))    # output layer    model.add(tf.keras.layers.Dense(3))    model.compile(loss='mse', optimizer='nadam', metrics=['accuracy'])    model.fit(x_data[train], y_data[train],              verbose=2,              batch_size=None,              epochs=1,              validation_data=(x_data[validation], y_data[validation])              # callbacks=early_stop              )    prediction = model.predict(x_data[validation])    y_validation = y_data[validation]

如果您需要一个创建时间步的函数,请使用以下函数:

def multivariate_data(dataset, target, start_index, end_index, history_size,                      target_size, step, single_step=False):  data = []  labels = []  start_index = start_index + history_size  if end_index is None:    end_index = len(dataset) - target_size  for i in range(start_index, end_index):    indices = range(i-history_size, i, step)    data.append(dataset[indices])    if single_step:      labels.append(target[i+target_size])    else:      labels.append(target[i:i+target_size])  return np.array(data), np.array(labels)

它将为您提供正确的形状,例如:

multivariate_data(dataset=np.random.rand(40101, 3),                   target=np.random.rand(40101, 3),                   0, len(x_data), 5, 0, 1, True)[0].shape
(40096, 5, 3)

您失去了5个数据点,因为在开始时您无法回顾过去5个步骤。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注