在不使用sklearn的情况下使用SGD(每次epoch的LogLoss增加)

def train(X_train,y_train,X_test,y_test,epochs,alpha,eta0):
    w,b = initialize_weights(X_train[0])
    loss_test=[]
    N=len(X_train)
    for i in range(0,epochs):
        print(i)
        for j in range(N-1):
            grad_dw=gradient_dw(X_train[j],y_train[j],w,b,alpha,N)
            grad_db=gradient_db(X_train[j],y_train[j],w,b)
            w=np.array(w)+(alpha*(np.array(grad_dw)))
            b=b+(alpha*(grad_db))
        
    predict2 = []
    for m in range(len(y_test)):
        z=np.dot(w[0],X_test[m])+b
        if sigmoid(z) == 0: # sigmoid(w,x,b) returns 1/(1+exp(-(dot(x,w)+b)))
            predict2.append(0.000001)
        elif sigmoid(z) == 1:
            predict2.append(0.99999)
        else:
            predict2.append(sigmoid(z))
    
    loss_test.append(logloss(y_test,predict2))
    
    return w,b,loss_test

我的梯度dw函数

def gradient_dw(x,y,w,b,alpha,N):
    dw=[]
    for i in range(len(x)):
        dw.append((x[i]*(y-1/(1+np.exp(abs(w.T[0][i]*x[i]+b)))))+(alpha/N)*(w.T[0][i]))
    return dw

我的梯度db函数:

 def gradient_db(x,y,w,b):
        db=0
        for i in range(len(x)):
            db=(y-1/(1+np.exp(abs(w.T[0][i]*x[i]+b))))
        return db

我的损失函数:

def logloss(y_true,y_pred):
    loss=0
    for i in range(len(y_true)):
        loss+=((y_true[i]*math.log10(y_pred[i]))+((1-y_true[i])*math.log10(1-y_pred[i])))
    loss=-1*(1/len(y_true))*loss
    return loss

我的问题是每次epoch之后我的损失都在增加。为什么?

任何帮助都将不胜感激

谢谢你


回答:

  1. 问题出在权重函数上

  2. 我之前使用的权重数组维度是(15,1)

  3. 但它应该为(15)

  4. 因此需要根据这个维度对代码进行相应的修改

  5. 谢谢你

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注