我在我的聊_bot项目中使用Bert分类器。我对传入的文本消息执行了必要的分词操作。然后我将其插入模型并进行预测。我如何获得这个估计的准确率?
for text in test_texts: encoded_dict = tokenizer.encode_plus( text, add_special_tokens=True, max_length=max_len, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt', ) input_ids.append(encoded_dict['input_ids']) attention_masks.append(encoded_dict['attention_mask'])input_ids = torch.cat(input_ids, dim=0)attention_masks = torch.cat(attention_masks, dim=0)print("input_ids ",input_ids)print("attention_masks ",attention_masks)batch_size = 32prediction_data = TensorDataset(input_ids, attention_masks)prediction_sampler = SequentialSampler(prediction_data)prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=batch_size)print("prediction_data ",prediction_data)print("prediction_sampler ",prediction_sampler)print("prediction_dataloader ",prediction_dataloader)model.eval()predictions, true_labels = [], []for batch in prediction_dataloader: batch = tuple(t.to(device) for t in batch) b_input_ids, b_input_mask = batch print("b input ids",b_input_ids) with torch.no_grad(): outputs = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask.to(device)) logits = outputs[0] logits = logits.detach().cpu().numpy() label_ids = b_input_mask.to('cpu').numpy() predictions.append(logits) true_labels.append(label_ids) print("logits ",logits) print("label_ids ",label_ids) print("true_labels ",true_labels)print('Prediction completed')prediction_set = []for i in range(len(true_labels)): pred_labels_i = np.argmax(predictions[i], axis=1).flatten() prediction_set.append(pred_labels_i)prediction= [item for sublist in prediction_set for item in sublist]print("prediction:", prediction[0])
我正在寻找一个百分比值。根据这个百分比值的结果,我会做出回应或通过。
回答:
可以直接使用一些库来计算准确率。
例如,你可以使用sklearn:
from sklearn.metrics import accuracy_scoreprint("Accuracy:", accuracy_score(true_labels, predictions)) # 值在0和1之间print("Accuracy Percentage {} %:".format(100*accuracy_score(true_labels, predictions))) # 值在0和100之间