我对TensorFlow/机器学习还比较新手,因此遇到了一些困难。我有一个csv格式的数据集,可以在这里找到,并且我想像这里一样使用pandas读取它。在另一个数据集上它是可以工作的,但我对其进行了修改和扩展,我觉得这里可能遗漏了一些重要的东西。基本上,我只是想从给定的数据集中预测“overall”评分。以下是我的代码和我得到的回溯信息:
import pandas as pdimport tensorflow as tfimport tempfileCOLUMNS = ["reviewerID", "asin", "reviewerName", "helpful_0", "helpful_1", "reviewText", "overall", "summary", "unixReviewTime"]CATEGORICAL_COLUMNS = ["reviewerID", "reviewerName", "reviewText", "summary"]CONTINUOUS_COLUMNS = ["helpful_0", "helpful_1", "unixReviewTime"]df_train = pd.read_csv('Digital_Music_5.csv', names=COLUMNS, skipinitialspace=True, low_memory=False, skiprows=1)df_test = pd.read_csv('Digital_Music_5_test.csv', names=COLUMNS, skipinitialspace=True, skiprows=1)LABEL_COLUMN = "label"df_train[LABEL_COLUMN] = df_train["overall"]df_test[LABEL_COLUMN] = df_train["overall"]print(df_train)def input_fn(df): # Creates a dictionary mapping from each continuous feature column name (k) # to the values of that column stored in a constant Tensor. continuous_cols = {k: tf.constant(df[k].values) for k in CONTINUOUS_COLUMNS} # Creates a dictionary mapping from each categorical feature column name # (k) to the values of that column stored in a tf.SparseTensor. categorical_cols = {k: tf.SparseTensor( indices=[[i, 0] for i in range(df[k].size)], values=df[k].values, dense_shape=[df[k].size, 1],) for k in CATEGORICAL_COLUMNS} # Merges the two dictionaries into one. feature_cols = dict(continuous_cols) feature_cols.update(categorical_cols) # Converts the label column into a constant Tensor. label = tf.constant(df[LABEL_COLUMN].values) # Returns the feature columns and the label. return feature_cols, labeldef train_input_fn(): return input_fn(df_train)def eval_input_fn(): return input_fn(df_test)reviewText = tf.contrib.layers.sparse_column_with_hash_bucket("reviewText", hash_bucket_size=100000)reviewerID = tf.contrib.layers.sparse_column_with_hash_bucket("reviewerID", hash_bucket_size=100000)reviewerName = tf.contrib.layers.sparse_column_with_hash_bucket("reviewerName", hash_bucket_size=100000)summary = tf.contrib.layers.sparse_column_with_hash_bucket("summary", hash_bucket_size=100000)asin = tf.contrib.layers.real_valued_column("asin")helpful_0 = tf.contrib.layers.real_valued_column("helpful_0")helpful_1 = tf.contrib.layers.real_valued_column("helpful_1")unixReviewTime = tf.contrib.layers.real_valued_column("unixReviewTime")# reviewText_x_summary = tf.contrib.layers.crossed_column([reviewText, summary], hash_bucket_size=100000)# reviewerID_x_reviewerName = tf.contrib.layers.crossed_column([reviewerID, reviewerName], hash_bucket_size=100000)# reviewText_x_reviewerID_x_reviewerName = tf.contrib.layers.crossed_column([reviewText, reviewerID, reviewerName], hash_bucket_size=100000)model_dir = tempfile.mkdtemp()m = tf.contrib.learn.LinearClassifier(feature_columns=[reviewText, reviewerName, summary, asin, helpful_0, helpful_1, unixReviewTime], optimizer=tf.train.FtrlOptimizer( learning_rate=0.1, l1_regularization_strength=1.0, l2_regularization_strength=1.0), model_dir=model_dir)m.fit(input_fn=train_input_fn, steps=200)# results = m.evaluate(input_fn=eval_input_fn, steps=1)# for key in sorted(results):# print("{}: {}".format(key, results[key]))
回溯信息:
Traceback (most recent call last): File "amazon_reviews.py", line 78, in <module> m.fit(input_fn=train_input_fn, steps=200) File "/home/cfritz/virtualenvs/tensorflow/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 280, in new_func return func(*args, **kwargs) File "/home/cfritz/virtualenvs/tensorflow/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 426, in fit loss = self._train_model(input_fn=input_fn, hooks=hooks) File "/home/cfritz/virtualenvs/tensorflow/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 932, in _train_model features, labels = input_fn() File "amazon_reviews.py", line 47, in train_input_fn return input_fn(df_train) File "amazon_reviews.py", line 36, in input_fn dense_shape=[df[k].size, 1],) for k in CATEGORICAL_COLUMNS} File "amazon_reviews.py", line 36, in <dictcomp> dense_shape=[df[k].size, 1],) for k in CATEGORICAL_COLUMNS} File "/home/cfritz/virtualenvs/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/sparse_tensor.py", line 125, in __init__ values, name="values", as_ref=True) File "/home/cfritz/virtualenvs/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 702, in internal_convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File "/home/cfritz/virtualenvs/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py", line 110, in _constant_tensor_conversion_function return constant(v, dtype=dtype, name=name) File "/home/cfritz/virtualenvs/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py", line 99, in constant tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape)) File "/home/cfritz/virtualenvs/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py", line 451, in make_tensor_proto append_fn(tensor_proto, proto_values) File "/home/cfritz/virtualenvs/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py", line 109, in SlowAppendObjectArrayToTensorProto tensor_proto.string_val.extend([compat.as_bytes(x) for x in proto_values]) File "/home/cfritz/virtualenvs/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py", line 109, in <listcomp> tensor_proto.string_val.extend([compat.as_bytes(x) for x in proto_values]) File "/home/cfritz/virtualenvs/tensorflow/lib/python3.6/site-packages/tensorflow/python/util/compat.py", line 65, in as_bytes (bytes_or_text,))TypeError: Expected binary or unicode string, got nan
回答:
你的输入DataFrame包含空的评论者姓名和评论文本,这些被pd.read_csv()
映射为NaN,然而TensorFlow期望的是字符串而不是NaN。
使用以下命令检查空单元格:
df_train[df_train.isnull().any(axis=1)]
你可以简单地将这些NaN转换为一个空字符串,使用
df_train.fillna('', inplace=True)
或者让pd.read_csv()
直接创建空字符串而不是NaN,使用na_values=[]
:
df_train = pd.read_csv('Digital_Music_5.csv', names=COLUMNS, skipinitialspace=True, low_memory=False, skiprows=1, na_values=[])