预测结果是什么?CNN Keras

我创建了一个CNN模型,试图预测图像是狗还是猫,但在输出结果中我不知道它预测了什么。请看下面的代码:

import pandas as pdfrom keras.models import Sequentialfrom keras.preprocessing.image import ImageDataGeneratorfrom keras.layers import Dense, Flatten, Conv2D, Dropout, MaxPooling2Dfrom scipy import miscimport numpy as npdef build_classifier():    # 模型基于 'https://www.researchgate.net/profile/Le_Lu/publication/277335071/figure/fig8/AS:294249976352779@1447166069905/Figure-8-The-proposed-CNN-model-architecture-is-composed-of-five-convolutional-layers.png'    # 由于处理原因,最好在不创建变量的情况下添加层,但对于小数据集来说影响不大。    classifier = Sequential()    conv1 = Conv2D(filters=64, kernel_size=(2,2), activation='relu', input_shape=(64,64,3))    conv2 = Conv2D(filters=192, kernel_size=(2,2), activation='relu')    conv3 = Conv2D(filters=384, kernel_size=(2,2), activation='relu')    conv4 = Conv2D(filters=256, kernel_size=(2,2), activation='relu')    conv5 = Conv2D(filters=256, kernel_size=(2,2), activation='relu')    pooling1 = MaxPooling2D(pool_size=(2,2))    pooling2 = MaxPooling2D(pool_size=(2,2))    pooling3 = MaxPooling2D(pool_size=(2,2))    fcl1 = Dense(1024, activation='relu')    fcl2 = Dense(1024, activation='relu')    fcl3 = Dense(2, activation='softmax')    dropout1= Dropout(0.5)    dropout2 = Dropout(0.5)    flatten = Flatten()    layers = [conv1, pooling1, conv2, pooling2, conv3, conv4, conv5,             pooling3, flatten, fcl1, dropout1, fcl2, dropout2, fcl3]    for l in layers:        classifier.add(l)    return classifiermodel = build_classifier()model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])train_datagen = ImageDataGenerator(        rescale=1./255,        shear_range=0.2,        zoom_range=0.2,        horizontal_flip=True)test_datagen = ImageDataGenerator(rescale=1./255)train_generator = train_datagen.flow_from_directory(        'dataset/training_set',        target_size=(64, 64),        batch_size=32,        class_mode='categorical')validation_generator = test_datagen.flow_from_directory(        'dataset/test_set',        target_size=(64, 64),        batch_size=32,        class_mode='categorical')model.fit_generator(        train_generator,        steps_per_epoch=200,        epochs=32,        validation_data=validation_generator,        validation_steps=100)model.save('model.h5')model.save_weights('model_weights.h5')

我在另一个文件中打开了保存的模型:

from keras.models import load_modelfrom scipy import miscimport numpy as npdef single_pred(filepath, model):    classifier = load_model(model)    img = misc.imread(filepath)    img = misc.imresize(img, (64,64,3))    img = np.expand_dims(img, 0)    print(classifier.predict(img))if __name__ == '__main__':    single_pred('/home/leonardo/Desktop/Help/dataset/single_prediction/cat_or_dog_2.jpg', 'model.h5')

输出结果如下:

Using TensorFlow backend.2017-10-09 14:06:25.520018: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.2017-10-09 14:06:25.520054: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.[[ 0.  1.]]

但是,我如何知道预测结果是狗还是猫呢?有了这个结果,我仍然不知道图像是狗还是猫。


回答:

除非你指定标签,否则你的生成器会自动为你创建分类标签。你可以使用 train_generator.class_indices 来检查这些标签。类标签的顺序是按字母数字排序的,所以猫=0,狗=1

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注