我正在按照https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10上的cifar10教程进行学习。在这个项目中,有6个类别。通过在网上搜索,我理解了cifar10.py和cifar10_input.py中的类别。但是我无法理解cifar10_train.py中的train函数。以下是cifar10_train.py类中的train函数。
def train():with tf.Graph().as_default(): global_step = tf.contrib.framework.get_or_create_global_step() # get images and labels for cifar 10 # Force input pipeline to CPU:0 to avoid operations sometime ending on # GPU and resulting in a slow down with tf.device('/cpu:0'): images, labels = cifar10.distorted_inputs() logits = cifar10.inference(images) loss = cifar10.loss(logits, labels) train_op = cifar10.train(loss, global_step) class _LoggerHook(tf.train.SessionRunHook): def begin(self): self._step = -1 self._start_time = time.time() def before_run(self, run_context): self._step += 1 return tf.train.SessionRunArgs(loss) def after_run(self, run_context, run_values): if self._step % FLAGS.log_frequency == 0: current_time = time.time() duration = current_time - self._start_time self._start_time = current_time loss_value = run_values.results examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration sec_per_batch = float(duration / FLAGS.log_frequency) format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print(format_str % (datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch)) with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.train_dir, hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps), tf.train.NanTensorHook(loss), _LoggerHook()], config=tf.ConfigProto( log_device_placement=FLAGS.log_device_placement)) as mon_sess: while not mon_sess.should_stop(): mon_sess.run(train_op)
有人能解释一下_LoggerHook类中发生了什么吗?
回答:
它使用MonitoredSession
和SessionRunHook
来记录训练时的损失。
_LoggerHook
是SessionRunHook
的一个实现,按照以下顺序运行:
call hooks.begin() sess = tf.Session() call hooks.after_create_session() while not stop is requested: call hooks.before_run() try: results = sess.run(merged_fetches, feed_dict=merged_feeds) except (errors.OutOfRangeError, StopIteration): break call hooks.after_run() call hooks.end() sess.close()
这是从这里获得的。
它在session.run
之前收集loss
数据,然后以预定义的格式输出loss
。
教程:https://www.tensorflow.org/tutorials/layers
希望这对你有帮助。