我设计了一个CNN并使用以下参数进行编译,
training_file_loc = "8-SignLanguageMNIST/sign_mnist_train.csv"testing_file_loc = "8-SignLanguageMNIST/sign_mnist_test.csv"def getData(filename): images = [] labels = [] with open(filename) as csv_file: file = csv.reader(csv_file, delimiter = ",") next(file, None) for row in file: label = row[0] data = row[1:] img = np.array(data).reshape(28,28) images.append(img) labels.append(label) images = np.array(images).astype("float64") labels = np.array(labels).astype("float64") return images, labelstraining_images, training_labels = getData(training_file_loc)testing_images, testing_labels = getData(testing_file_loc)print(training_images.shape, training_labels.shape)print(testing_images.shape, testing_labels.shape)training_images = np.expand_dims(training_images, axis = 3)testing_images = np.expand_dims(testing_images, axis = 3)training_datagen = ImageDataGenerator( rescale = 1/255, rotation_range = 45, width_shift_range = 0.2, height_shift_range = 0.2, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True, fill_mode = "nearest")training_generator = training_datagen.flow( training_images, training_labels, batch_size = 64,)validation_datagen = ImageDataGenerator( rescale = 1/255, rotation_range = 45, width_shift_range = 0.2, height_shift_range = 0.2, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True, fill_mode = "nearest")validation_generator = training_datagen.flow( testing_images, testing_labels, batch_size = 64,)model = tf.keras.Sequential([ keras.layers.Conv2D(16, (3, 3), input_shape = (28, 28, 1), activation = "relu"), keras.layers.MaxPooling2D(2, 2), keras.layers.Conv2D(32, (3, 3), activation = "relu"), keras.layers.MaxPooling2D(2, 2), keras.layers.Flatten(), keras.layers.Dense(256, activation = "relu"), keras.layers.Dropout(0.25), keras.layers.Dense(512, activation = "relu"), keras.layers.Dropout(0.25), keras.layers.Dense(26, activation = "softmax")])model.compile( loss = "categorical_crossentropy", optimizer = RMSprop(lr = 0.001), metrics = ["accuracy"])
但是,当我运行model.fit()时,出现了以下错误,
ValueError: Shapes (None, 1) and (None, 24) are incompatible
在将损失函数更改为sparse_categorical_crossentropy
后,程序正常运行。
我不明白这是为什么。
谁能解释一下这是怎么回事,以及这两种损失函数的区别?
回答:
问题在于,categorical_crossentropy
期望标签是一热编码的,这意味着,对于每个样本,它期望一个长度为num_classes
的张量,其中label
位置的元素被设置为1,其余为0。
另一方面,sparse_categorical_crossentropy
直接使用整数标签(因为这里的用例是类别数目很大,所以一热编码标签会浪费大量内存)。我认为,但不能确定,categorical_crossentropy
的运行速度比其稀疏版本更快。
对于你的情况,有26个类别,我建议使用非稀疏版本,并将你的标签转换为一热编码,如下所示:
def getData(filename): images = [] labels = [] with open(filename) as csv_file: file = csv.reader(csv_file, delimiter = ",") next(file, None) for row in file: label = row[0] data = row[1:] img = np.array(data).reshape(28,28) images.append(img) labels.append(label) images = np.array(images).astype("float64") labels = np.array(labels).astype("float64") return images, tf.keras.utils.to_categorical(labels, num_classes=26) # 你可以省略num_classes,让它从数据中计算
补充说明:除非你有理由使用float64
来处理图像,否则我建议改用float32
(这样可以将数据集所需的内存减半,而且模型很可能在第一步操作中就将它们转换为float32
)