我在尝试在 Python 2.7 中实现这段代码时遇到了这个错误。希望能得到帮助。我使用的是最新的 sklearn 版本(0.18.1)和 xgboost 版本(0.6)。
import xgboost as xgbfrom sklearn.model_selection import StratifiedKFoldfrom sklearn.metrics import f1_score, roc_auc_score, confusion_matrixnfold = 3kf = StratifiedKFold(nfold, shuffle=True)dtrain = xgb.DMatrix(x_train, label=y_train)dtest = xgb.DMatrix(x_test)params = { 'objective' : 'binary:logistic', 'eval_metric': 'auc', 'min_child_weight':10, 'scale_pos_weight':scale,}hist = xgb.cv(params, dtrain, num_boost_round=10000, folds=kf, early_stopping_rounds=50, as_pandas=True, verbose_eval=100, show_stdv=True, seed=0)
我得到了这个错误:
TypeErrorTraceback (most recent call last)<ipython-input-52-41c415e116d7> in <module>() 5 'scale_pos_weight':scale, 6 }----> 7 hist = xgb.cv(params, dtrain, num_boost_round=10000, folds=kf, early_stopping_rounds=50, as_pandas=True, verbose_eval=100, show_stdv=True, seed=0) 8 9 /opt/conda/lib/python2.7/site-packages/xgboost/training.pyc in cv(params, dtrain, num_boost_round, nfold, stratified, folds, metrics, obj, feval, maximize, early_stopping_rounds, fpreproc, as_pandas, verbose_eval, show_stdv, seed, callbacks) 369 370 results = {}--> 371 cvfolds = mknfold(dtrain, nfold, params, seed, metrics, fpreproc, stratified, folds) 372 373 # setup callbacks/opt/conda/lib/python2.7/site-packages/xgboost/training.pyc in mknfold(dall, nfold, param, seed, evals, fpreproc, stratified, folds) 236 idset = [randidx[(i * kstep): min(len(randidx), (i + 1) * kstep)] for i in range(nfold)] 237 elif folds is not None:--> 238 idset = [x[1] for x in folds] 239 nfold = len(idset) 240 else:TypeError: 'StratifiedKFold' object is not iterable
回答:
在 xgb.cv
函数内部,尝试将
folds=kf
替换为
folds=list(kf.split(x_train,y_train))
使用 split 方法 来获取训练和验证的分割。我们将其转换为 list
,这样它就变成了一个可迭代对象。
如果这样不行,尝试去掉 list
。也就是:
folds=kf.split(x_train,y_train)