对于下面的函数,我没有得到估计器的数量作为输出,相反,我得到了如下类型错误。
cv() got an unexpected keyword argument 'show_progress'
尽管文档中包含了该标志,我还是收到了类型错误。我正在参考这个博客进行参数调整。有人能指出我哪里做错了吗? 博客 有没有其他方法可以得到估计器数量作为输出?
def modelfit(alg, dtrain, predictors, useTrainCV=True, cv_folds=5, early_stopping_rounds=50):
if useTrainCV:
xgb_param = alg.get_xgb_params()
xgtrain = xgb.DMatrix(dtrain[predictors].values, label=dtrain[target].values, silent=False)
cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds,
metrics='auc', early_stopping_rounds=early_stopping_rounds, show_progress = True)
alg.set_params(n_estimators=cvresult.shape[0])
#Fit the algorithm on the data
alg.fit(dtrain[predictors], dtrain[target],eval_metric='auc')
#Predict training set:
dtrain_predictions = alg.predict(dtrain[predictors])
dtrain_predprob = alg.predict_proba(dtrain[predictors])[:,1]
#Print model report:
print "\nModel Report"
print "Accuracy : %.4g" % metrics.accuracy_score(dtrain[target].values, dtrain_predictions)
print "AUC Score (Train): %f" % metrics.roc_auc_score(dtrain[target], dtrain_predprob)
feat_imp = pd.Series(alg.booster().get_fscore()).sort_values(ascending=False)
feat_imp.plot(kind='bar', title='Feature Importances')
plt.ylabel('Feature Importance Score')
回答:
xgboost的最新版本(0.6)为xgb.cv提供了以下选项:
xgboost.cv(params, dtrain, num_boost_round=10, nfold=3, stratified=False, folds=None, metrics=(), obj=None, feval=None, maximize=False, early_stopping_rounds=None, fpreproc=None, as_pandas=True, verbose_eval=None, show_stdv=True, seed=0, callbacks=None, shuffle=True)
show_progress已被弃用,取而代之的是verbose_eval。详见 这里