我有一组包含48个特征列和一个二元分类目标的数据集。在处理分类问题时,我能够在使用独热编码或类似方法将类别转换为数值后,加载所有算法,如线性、逻辑、KNN、随机森林和提升分类器。但是,在没有进行从类别到数值的转换的情况下,运行像随机森林和决策树这样的算法时,我遇到了错误:“ValueError: could not convert string to float …”
我正在尝试一个没有进行任何更改的基础模型,请指导我。
print(type(X)) ---> <class 'pandas.core.frame.DataFrame'>print(type(y)) ---- > <class 'pandas.core.series.Series'>from sklearn.ensemble import RandomForestClassifierfrom sklearn.model_selection import train_test_splitfrom sklearn import metricsX_train_rf, X_test_rf, y_train_rf, y_test_rf = train_test_split(X,y,random_state=0)randomforest = RandomForestClassifier()randomforest.fit(X_train_rf, y_train_rf)y_train_pred_rf=randomforest.predict(X_train_rf)y_pred_rf= randomforest.predict(X_test_rf)print('training accuracy',accuracy_score(y_train_rf,y_train_pred_rf))print('test accuracy',accuracy_score(y_test_rf,y_pred_rf))# The o/p obtained is : ValueError: could not convert string to float: 'Delhi' (# Delhi- the element in an feature column )
回答:
您可以使用python-weka包装器,这样就不需要独热编码。例如:
import weka.core.jvm as jvmfrom weka.core.converters import Loaderfrom weka.classifiers import Classifierdef get_weka_prob(inst): dist = c.distribution_for_instance(inst) p = dist[next((i for i, x in enumerate(inst.class_attribute.values) if x == 'DONE'), -1)] return pjvm.start()loader = Loader(classname="weka.core.converters.CSVLoader")data = loader.load_file(r'.\recs_csv\df.csv')data.class_is_last()datatst = loader.load_file(r'.\recs_csv\dftst.csv')datatst.class_is_last()c = Classifier("weka.classifiers.trees.J48", options=["-C", "0.1"])c.build_classifier(data)print(c)probstst = [get_weka_prob(inst) for inst in datatst]jvm.stop()