我试图在Keras中训练一个用于信号处理的自编码器,但不知为何失败了。
我的输入是6个测量值(加速度_x/y/z,陀螺仪_x/y/z)的128帧长度的片段,因此我的数据集的总体形状为(22836, 128, 6)
,其中22836是样本大小。
这是我用于自编码器的示例代码:
X_train, X_test, Y_train, Y_test = load_dataset()# 重塑输入,其大小为(22836, 128, 6)X_train = X_train.reshape(X_train.shape[0], np.prod(X_train.shape[1:]))X_test = X_test.reshape(X_test.shape[0], np.prod(X_test.shape[1:]))# 现在形状将变为(22836, 768)### MODEL ###input_shape = [X_train.shape[1]]X_input = Input(input_shape)x = Dense(1000, activation='sigmoid', name='enc0')(X_input)encoded = Dense(350, activation='sigmoid', name='enc1')(x)x = Dense(1000, activation='sigmoid', name='dec0')(encoded)decoded = Dense(input_shape[0], activation='sigmoid', name='dec1')(x)model = Model(inputs=X_input, outputs=decoded, name='autoencoder')model.compile(optimizer='rmsprop', loss='mean_squared_error')print(model.summary())
model.summary()
的输出是
Model summary_________________________________________________________________Layer (type) Output Shape Param # =================================================================input_55 (InputLayer) (None, 768) 0 _________________________________________________________________enc0 (Dense) (None, 1000) 769000 _________________________________________________________________enc1 (Dense) (None, 350) 350350 _________________________________________________________________dec1 (Dense) (None, 1000) 351000 _________________________________________________________________dec0 (Dense) (None, 768) 768768 =================================================================Total params: 2,239,118Trainable params: 2,239,118Non-trainable params: 0
训练通过以下方式进行:
# 训练模型history = model.fit(x = X_train, y = X_train, epochs=5, batch_size=32, validation_data=(X_test, X_test))
我只是试图学习恒等函数,这产生了以下结果:
Train on 22836 samples, validate on 5709 samplesEpoch 1/522836/22836 [==============================] - 27s 1ms/step - loss: 0.9481 - val_loss: 0.8862Epoch 2/522836/22836 [==============================] - 24s 1ms/step - loss: 0.8669 - val_loss: 0.8358Epoch 3/522836/22836 [==============================] - 25s 1ms/step - loss: 0.8337 - val_loss: 0.8146Epoch 4/522836/22836 [==============================] - 25s 1ms/step - loss: 0.8164 - val_loss: 0.7960Epoch 5/522836/22836 [==============================] - 25s 1ms/step - loss: 0.8004 - val_loss: 0.7819
在这一点上,为了尝试了解它的表现如何,我检查了一些真实输入与预测输入的图表:
prediction = model.predict(X_test)for i in np.random.randint(0, 100, 7): pred = prediction[i, :].reshape(128,6) # 只获取加速度_x的值 pred = pred[:, 0] true = X_test[i, :].reshape(128,6) # 只获取加速度_x的值 true = true[:, 0] # 绘制原始和重建的图表 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(20, 6)) ax1.plot(true, color='green') ax2.plot(pred, color='red')
这些是看起来完全错误的一些图表:
除了训练轮数较少(实际上似乎没有太大影响)之外,您对问题有什么建议吗?
回答:
你的数据不在[0,1]范围内,为什么在最后一层使用sigmoid
作为激活函数?从最后一层移除激活函数(并且在前几层使用relu
可能会更好)。
还请对训练数据进行归一化。你可以使用按特征的归一化方法:
X_mean = X_train.mean(axis=0)X_train -= X_meanX_std = X_train.std(axis=0)X_train /= X_std + 1e-8
并且不要忘记在推理时(即测试时)使用计算出的统计数据(X_mean
和X_std
)来归一化测试数据。