我在PyTorch中使用LSTM进行学习的实现如下:
https://gist.github.com/rahulbhadani/f1d64042cc5a80280755cac262aa48aa
然而,代码出现了就地操作错误
我的错误输出是:
/home/ivory/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:10: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). # Remove the CWD from sys.path while we load stuff.---------------------------------------------------------------------------RuntimeError Traceback (most recent call last)<ipython-input-86-560ec78f2b64> in <module> 27 linear = torch.nn.Linear(hidden_nums, output_dim) 28 ---> 29 global_loss_list = global_training(lstm2)<ipython-input-84-152890a3028c> in global_training(optimizee) 3 adam_global_optimizer = torch.optim.Adam([{'params': optimizee.parameters()}, 4 {'params':linear.parameters()}], lr = 0.0001)----> 5 _, global_loss_1 = learn2(LSTM_Optimizee, training_steps, retain_graph_flag=True, reset_theta=True) 6 7 print(global_loss_1)<ipython-input-83-0357a528b94d> in learn2(optimizee, unroll_train_steps, retain_graph_flag, reset_theta) 43 # requires_grad=True. These are accumulated into x.grad for every 44 # parameter x. In pseudo-code: x.grad += dloss/dx---> 45 loss.backward(retain_graph = retain_graph_flag) #The default is False, when the optimized LSTM is set to True 46 47 print('x.grad: {}'.format(x.grad))~/anaconda3/lib/python3.7/site-packages/torch/tensor.py in backward(self, gradient, retain_graph, create_graph) 116 products. Defaults to ``False``. 117 """--> 118 torch.autograd.backward(self, gradient, retain_graph, create_graph) 119 120 def register_hook(self, hook):~/anaconda3/lib/python3.7/site-packages/torch/autograd/__init__.py in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables) 91 Variable._execution_engine.run_backward( 92 tensors, grad_tensors, retain_graph, create_graph,---> 93 allow_unreachable=True) # allow_unreachable flag 94 95 RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [1, 10]] is at version 1; expected version 0 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).
我尝试追踪错误但没有成功。任何这方面的帮助将不胜感激。
谢谢。
回答:
我认为问题出在以下这行代码:
global_loss_list.append(global_loss.detach_())
PyTorch中就地操作的惯例是在函数名后面使用_
(如detach_
)。我认为你不应该进行就地分离。换句话说,将detach_
改为detach