我需要帮助解决以下问题。我试图将我的CSV数据输入到我的第一层,即一维卷积层,但它显示
输入0与层conv1d_Conv1D1不兼容:期望ndim=3,发现ndim=2
这是我的代码
//move the tfjs_binding.node file in build-tmp-napi-v7/Release folder to build-tmp-napi-v7 folder will solve the problem.const dfd = require("danfojs-node");const tf = require("@tensorflow/tfjs-node");var petData;const TIME_STEPS = (24 * 60) / 60;console.log("start");var model = tf.sequential();model.add( tf.layers.conv1d({ filters: 3, kernelSize: 3, inputShape:[1] }));// model.add(tf.layers.dropout({ rate: 0.2 }));// model.add(// tf.layers.conv1d({// filters: 16,// kernelSize: 7,// padding: "same",// strides: 2,// activation: "relu",// })// );// model.add(// tf.layers.conv1d({// filters: 16,// kernelSize: 7,// padding: "same",// strides: 2,// activation: "relu",// })// );// model.add(tf.layers.dropout({ rate: 0.2 }));// model.add(// tf.layers.conv1d({// filters: 32,// kernelSize: 7,// padding: "same",// strides: 2,// activation: "relu",// })// );// model.add(// tf.layers.conv1d({// filters: 1,// kernelSize: 7,// padding: "same",// })// );model.compile({ optimizer: tf.train.adam((learningRate = 0.001)), loss: tf.losses.meanSquaredError,});model.summary();console.log("model created.");dfd .read_csv("./petTempData.csv", (chunk = 10000)) .then((df) => { let encoder = new dfd.LabelEncoder(); let cols = ["Date", "Time"]; cols.forEach((col) => { encoder.fit(df[col]); enc_val = encoder.transform(df[col]); df.addColumn({ column: col, value: enc_val }); }); petData = df.iloc({ columns: [`1`] }); yData = df["Temperature"]; // let scaler = new dfd.MinMaxScaler(); // scaler.fit(petData); // petData = scaler.transform(petData); // petData = petData.tensor.expandDims(-1); // const data = petData.tensor.reshape([24, 2, 1]); console.log(petData.shape); model.fit(petData.tensor, yData.tensor, { epochs: 10, batchSize: 4, // validationSplit: 0.01, callbacks: tf.callbacks.earlyStopping({ monitor: "loss", patience: "5", mode: "min", }), }); }) .catch((err) => { console.log(err); });
这是我的CSV原始文件
Date,Time,Temperature31-12-2020,01:30,36.631-12-2020,02:30,36.731-12-2020,03:30,36.631-12-2020,04:30,36.531-12-2020,05:30,36.831-12-2020,06:30,36.631-12-2020,07:30,36.631-12-2020,08:30,36.531-12-2020,09:30,36.631-12-2020,10:30,36.731-12-2020,11:30,36.631-12-2020,12:30,36.731-12-2020,13:30,36.731-12-2020,14:30,36.831-12-2020,15:30,36.931-12-2020,16:30,36.631-12-2020,17:30,36.731-12-2020,18:30,36.831-12-2020,19:30,36.731-12-2020,20:30,36.631-12-2020,21:30,36.631-12-2020,22:30,36.531-12-2020,23:30,36.5,,
我已经尝试重塑我的输入,并扩展维度,但这些方法都不起作用。任何解决方案都将不胜感激!
回答:
conv1d
层期望输入形状的维度为2,因此,输入形状需要是[a, b]
(a, b为正整数)。
model = tf.sequential();model.add( tf.layers.conv1d({ filters: 3, kernelSize: 1, inputShape:[1, 3] }));model.predict(tf.ones([1, 1, 3])).print()