无法从层’fc6’复制参数0的权重

我在尝试使用训练好的网络进行预测时遇到了这个错误:无法从层’fc6’复制参数0的权重

这是我的deploy.prototxt文件

name: "CaffeNet"layer {  name: "data"  type: "Input"  top: "data"  input_param { shape: { dim: 1 dim: 1 dim: 150 dim: 227 } }}layer {  name: "conv1"  type: "Convolution"  bottom: "data"  top: "conv1"  convolution_param {    num_output: 96    kernel_size: 11    stride: 4  }}layer {  name: "relu1"  type: "ReLU"  bottom: "conv1"  top: "conv1"}layer {  name: "pool1"  type: "Pooling"  bottom: "conv1"  top: "pool1"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "norm1"  type: "LRN"  bottom: "pool1"  top: "norm1"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "conv2"  type: "Convolution"  bottom: "norm1"  top: "conv2"  convolution_param {    num_output: 256    pad: 2    kernel_size: 5    group: 2  }}layer {  name: "relu2"  type: "ReLU"  bottom: "conv2"  top: "conv2"}layer {  name: "pool2"  type: "Pooling"  bottom: "conv2"  top: "pool2"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "norm2"  type: "LRN"  bottom: "pool2"  top: "norm2"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "conv3"  type: "Convolution"  bottom: "norm2"  top: "conv3"  convolution_param {    num_output: 384    pad: 1    kernel_size: 3  }}layer {  name: "relu3"  type: "ReLU"  bottom: "conv3"  top: "conv3"}layer {  name: "conv4"  type: "Convolution"  bottom: "conv3"  top: "conv4"  convolution_param {    num_output: 384    pad: 1    kernel_size: 3    group: 2  }}layer {  name: "relu4"  type: "ReLU"  bottom: "conv4"  top: "conv4"}layer {  name: "conv5"  type: "Convolution"  bottom: "conv4"  top: "conv5"  convolution_param {    num_output: 256    pad: 1    kernel_size: 3    group: 2  }}layer {  name: "relu5"  type: "ReLU"  bottom: "conv5"  top: "conv5"}layer {  name: "pool5"  type: "Pooling"  bottom: "conv5"  top: "pool5"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "fc6"  type: "InnerProduct"  bottom: "pool5"  top: "fc6"  inner_product_param {    num_output: 4096  }}layer {  name: "relu6"  type: "ReLU"  bottom: "fc6"  top: "fc6"}layer {  name: "drop6"  type: "Dropout"  bottom: "fc6"  top: "fc6"  dropout_param {    dropout_ratio: 0.5  }}layer {  name: "fc7"  type: "InnerProduct"  bottom: "fc6"  top: "fc7"  inner_product_param {    num_output: 4096  }}layer {  name: "relu7"  type: "ReLU"  bottom: "fc7"  top: "fc7"}layer {  name: "drop7"  type: "Dropout"  bottom: "fc7"  top: "fc7"  dropout_param {    dropout_ratio: 0.5  }}layer {  name: "fc8"  type: "InnerProduct"  bottom: "fc7"  top: "fc8"  inner_product_param {    num_output: 2  }}layer {  name: "prob"  type: "Softmax"  bottom: "fc8"  top: "prob"}

这是我的train_val.prototxt文件

name: "CaffeNet"layer {  name: "data"  type: "Data"  top: "data"  top: "label"  include {    phase: TRAIN  }  transform_param {    mirror: true    crop_size: 150    mean_file: "/home/ttb010/TT/partituras/input/mean.binaryproto"  }# mean pixel / channel-wise mean instead of mean image#  transform_param {#    crop_size: 150#    mean_value: 104#    mean_value: 117#    mean_value: 123#    mirror: true#  }  data_param {    source: "/home/ttb010/TT/partituras/input/train_lmdb"    batch_size: 256    backend: LMDB  }}layer {  name: "data"  type: "Data"  top: "data"  top: "label"  include {    phase: TEST  }  transform_param {    mirror: false    crop_size: 150    mean_file: "/home/ttb010/TT/partituras/input/mean.binaryproto"  }# mean pixel / channel-wise mean instead of mean image#  transform_param {#    crop_size: 150#    mean_value: 104#    mean_value: 117#    mean_value: 123#    mirror: true#  }  data_param {    source: "/home/ttb010/TT/partituras/input/validation_lmdb"    batch_size: 50    backend: LMDB  }}layer {  name: "conv1"  type: "Convolution"  bottom: "data"  top: "conv1"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 96    kernel_size: 11    stride: 4    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 0    }  }}layer {  name: "relu1"  type: "ReLU"  bottom: "conv1"  top: "conv1"}layer {  name: "pool1"  type: "Pooling"  bottom: "conv1"  top: "pool1"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "norm1"  type: "LRN"  bottom: "pool1"  top: "norm1"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "conv2"  type: "Convolution"  bottom: "norm1"  top: "conv2"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 256    pad: 2    kernel_size: 5    group: 2    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu2"  type: "ReLU"  bottom: "conv2"  top: "conv2"}layer {  name: "pool2"  type: "Pooling"  bottom: "conv2"  top: "pool2"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "norm2"  type: "LRN"  bottom: "pool2"  top: "norm2"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "conv3"  type: "Convolution"  bottom: "norm2"  top: "conv3"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 384    pad: 1    kernel_size: 3    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 0    }  }}layer {  name: "relu3"  type: "ReLU"  bottom: "conv3"  top: "conv3"}layer {  name: "conv4"  type: "Convolution"  bottom: "conv3"  top: "conv4"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 384    pad: 1    kernel_size: 3    group: 2    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu4"  type: "ReLU"  bottom: "conv4"  top: "conv4"}layer {  name: "conv5"  type: "Convolution"  bottom: "conv4"  top: "conv5"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 256    pad: 1    kernel_size: 3    group: 2    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu5"  type: "ReLU"  bottom: "conv5"  top: "conv5"}layer {  name: "pool5"  type: "Pooling"  bottom: "conv5"  top: "pool5"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "fc6"  type: "InnerProduct"  bottom: "pool5"  top: "fc6"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  inner_product_param {    num_output: 4096    weight_filler {      type: "gaussian"      std: 0.005    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu6"  type: "ReLU"  bottom: "fc6"  top: "fc6"}layer {  name: "drop6"  type: "Dropout"  bottom: "fc6"  top: "fc6"  dropout_param {    dropout_ratio: 0.5  }}layer {  name: "fc7"  type: "InnerProduct"  bottom: "fc6"  top: "fc7"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  inner_product_param {    num_output: 4096    weight_filler {      type: "gaussian"      std: 0.005    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu7"  type: "ReLU"  bottom: "fc7"  top: "fc7"}layer {  name: "drop7"  type: "Dropout"  bottom: "fc7"  top: "fc7"  dropout_param {    dropout_ratio: 0.5  }}layer {  name: "fc8"  type: "InnerProduct"  bottom: "fc7"  top: "fc8"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  inner_product_param {    num_output: 15    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 0    }  }}layer {  name: "accuracy"  type: "Accuracy"  bottom: "fc8"  bottom: "label"  top: "accuracy"  include {    phase: TEST  }}layer {  name: "loss"  type: "SoftmaxWithLoss"  bottom: "fc8"  bottom: "label"  top: "loss"}

我一直在搜索,但我不完全理解为什么会发生这种情况。我使用的是灰度图像,然后对它们进行二值化。我在训练网络时使用的输入图像大小为150×227。我知道在deploy.prototxt中,输入参数形状维度代表使用的通道数和图像大小,但我缺少另一个维度。解决这个问题的可能方法是什么?在此之前非常感谢,我很绝望。


回答:

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注