我的模型(CNN)对所有内容的预测结果都相同

希望大家度过美好的一天。我一直在研究一种类似FaceID的CNN类型模型,我的数据只有我的照片,模型没有错误,但在预测时总是给出相同的结果(对于每张脸都显示100%,即使不是我),我认为可能是Y值的问题,但我不确定。我想要的结果是区分是我还是其他人。以下是我的代码

# Face ID project, using CNN tensorflowfrom tensorflow.keras.preprocessing.image import img_to_arrayfrom tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D, BatchNormalization, Activationfrom tensorflow.keras import backend as Kimport numpy as npimport cv2  import glob# Preparing the data and parametersepochs = 100lr = 1e-3batch_size = 64 img_dims = (96,96,3)data = []labels = []image_files = glob.glob("C:/Users/berna/Desktop/Programming/AI_ML_DL/Projects/FaceID/Data/*")for img in image_files:    image = cv2.imread(img)    image = cv2.resize(image, (img_dims[0], img_dims[1]))    image = img_to_array(image)    data.append(image)    if img == img:        label = 1    else:        label = 0        labels.append([label])    # Preproccesing the data (convert arrays)data = np.array(data, dtype="float32") / 255.0labels = np.array(labels)X = data y = labelsdef build(width, height, depth, classes):    model = Sequential()    inputShape = height, width, depth     chanDim = -1    if K.image_data_format() == "channels_first":        inputShape = depth, height, width         chanDim = 1        # Creating the model    model.add(Conv2D(32, (3,3), padding="same", input_shape=inputShape))    model.add(Activation("relu"))    model.add(BatchNormalization(axis=chanDim))    model.add(MaxPooling2D(pool_size=(3,3)))    model.add(Dropout(0.25))    model.add(Conv2D(64, (3,3), padding="same"))    model.add(Activation("relu"))    model.add(BatchNormalization(axis=chanDim))    model.add(Conv2D(64, (3,3), padding="same"))    model.add(Activation("relu"))    model.add(BatchNormalization(axis=chanDim))    model.add(MaxPooling2D(pool_size=(2,2)))    model.add(Dropout(0.25))    model.add(Conv2D(128, (3,3), padding="same"))    model.add(Activation("relu"))    model.add(BatchNormalization(axis=chanDim))    model.add(Conv2D(128, (3,3), padding="same"))    model.add(Activation("relu"))    model.add(BatchNormalization(axis=chanDim))    model.add(MaxPooling2D(pool_size=(2,2)))    model.add(Dropout(0.25))    model.add(Flatten())    model.add(Dense(1024))    model.add(Activation("relu"))    model.add(BatchNormalization())    model.add(Dropout(0.5))    model.add(Dense(1))    model.add(Activation("sigmoid"))    return model# Build the model call model = build(width=img_dims[0], height=img_dims[1], depth=img_dims[2], classes=1)# compile the modelopt = Adam(lr=lr, decay=lr/epochs)model.compile(loss="binary_crossentropy",            optimizer=opt,            metrics=['accuracy'])# fitting the modelH = model.fit(X, y, batch_size=batch_size,                    epochs=epochs, verbose=1)model.save('faceid.model')

有什么想法吗?

编辑我修改了我的代码和数据集,现在其他人的标记为1,我自己的标记为0,但在预测时仍然只预测一种结果,以下是我的代码

# Face ID project, using CNN tensorflowfrom tensorflow.keras.preprocessing.image import img_to_arrayfrom tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Sequentialfrom tensorflow.keras.utils import to_categoricalfrom tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D, BatchNormalization, Activationfrom tensorflow.keras import backend as Kimport numpy as npimport randomimport cv2  import globimport os# Preparing the data and parametersepochs = 100lr = 1e-3batch_size = 64 img_dims = (96,96,3)data = []labels = []image_files = [f for f in glob.glob("C:/Users/berna/Desktop/Programming/AI_ML_DL/Projects/FaceID/Data"+"/**/*", recursive=True) if not os.path.isdir(f)]random.shuffle(image_files)for img in image_files:    image = cv2.imread(img)    image = cv2.resize(image, (img_dims[0], img_dims[1]))    image = img_to_array(image)    data.append(image)    label = img.split(os.path.sep)[-2]    if label == "Other":        label = 1    else:        label = 0        labels.append([label])    # Preproccesing the data (convert arrays)data = np.array(data, dtype="float32") / 255.0labels = np.array(labels)X = data y = to_categorical(labels, num_classes=2)def build(width, height, depth, classes):    model = Sequential()    inputShape = height, width, depth     chanDim = -1    if K.image_data_format() == "channels_first":        inputShape = depth, height, width         chanDim = 1        # Creating the model    model.add(Conv2D(32, (3,3), padding="same", input_shape=inputShape))    model.add(Activation("relu"))    model.add(BatchNormalization(axis=chanDim))    model.add(MaxPooling2D(pool_size=(3,3)))    model.add(Dropout(0.25))    model.add(Conv2D(64, (3,3), padding="same"))    model.add(Activation("relu"))    model.add(BatchNormalization(axis=chanDim))    model.add(Conv2D(64, (3,3), padding="same"))    model.add(Activation("relu"))    model.add(BatchNormalization(axis=chanDim))    model.add(MaxPooling2D(pool_size=(2,2)))    model.add(Dropout(0.25))    model.add(Conv2D(128, (3,3), padding="same"))    model.add(Activation("relu"))    model.add(BatchNormalization(axis=chanDim))    model.add(Conv2D(128, (3,3), padding="same"))    model.add(Activation("relu"))    model.add(BatchNormalization(axis=chanDim))    model.add(MaxPooling2D(pool_size=(2,2)))    model.add(Dropout(0.25))    model.add(Flatten())    model.add(Dense(1024))    model.add(Activation("relu"))    model.add(BatchNormalization())    model.add(Dropout(0.5))    model.add(Dense(classes))    model.add(Activation("sigmoid"))    return model# Build the model call model = build(width=img_dims[0], height=img_dims[1], depth=img_dims[2], classes=2)# compile the modelopt = Adam(lr=lr, decay=lr/epochs)model.compile(loss="binary_crossentropy",            optimizer=opt,            metrics=['accuracy'])# fitting the modelH = model.fit(X, y, batch_size=batch_size,                    epochs=epochs, verbose=1)model.save('faceid.model')

回答:

答案就在你的问题中。你说你的数据只有你的照片。这意味着你用相同标签y = 1的照片训练了模型。所以模型总是预测y = 1是合乎逻辑的。如果你想让模型区分你的照片和其他人的照片,你必须使用你的照片和其他人照片来训练模型,并设置y = 1为你的照片,y = 0为其他人的照片。

注意:在你的代码中,这个if条件总是返回true:

if img == img:    label = 1

因为img等于它自己,所以标签总是等于1。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注