Weka分类:错误+正确 < 总实例数,这是怎么回事?

我针对著名的Iris花朵问题运行了这段代码,进行了10折交叉验证,然后使用5种不同的分类方法对它们进行分类。

这应该使分类器在135个实例上进行训练,并在15个实例上进行测试,重复10次,所以我期望错误分类的实例数 + 正确分类的实例数 = 15。

以下是代码和输出。

public class WekaTest {   public static void main(String[] args) throws Exception {          // Comments are denoted by "//" at the beginning of the line.    BufferedReader datafile = readDataFile("C:\\Program Files\\Weka-3-8\\data\\iris.arff");    //BufferedReader datafile = readDataFile("C:\\hwork\\titanic\\train.arff");    Instances data = new Instances(datafile);    data.setClassIndex(data.numAttributes() - 1);    // Choose a type of validation split    Instances[][] split = crossValidationSplit(data, 10);    // Separate split into training and testing arrays    Instances[] trainingSplits = split[0];    Instances[] testingSplits  = split[1];    // Choose a set of classifiers    Classifier[] models = {     new J48(),                                new PART(),                                new DecisionTable(),                                new OneR(),                                new DecisionStump() };    // Run for each classifier model    double[][][] predictions = new double[100][100][2];    for(int j = 0; j < models.length; j++) {                for(int i = 0; i < trainingSplits.length; i++) {                           Evaluation validation = new Evaluation(trainingSplits[i]);                   models[j].buildClassifier(trainingSplits[i]);           validation.evaluateModel(models[j],  testingSplits[i]);                                               predictions[j][i][0] = validation.correct();           predictions[j][i][1] = validation.incorrect();           System.out.println("Classifier: "+models[j].getClass()+" : Correct: "+predictions[j][i][0]+", Wrong: "+predictions[i][j][1]);                       }//training foreach fold.        System.out.println("===================================================================");    }//training foreach classifier.}//main().public static BufferedReader readDataFile(String filename) {    BufferedReader inputReader = null;    try {        inputReader = new BufferedReader(new FileReader(filename));    } catch (FileNotFoundException ex) {        System.err.println("File not found: " + filename);    }            return inputReader;}//readDataFile().public static Evaluation simpleClassify(Classifier model, Instances trainingSet, Instances testingSet) throws Exception {    Evaluation validation = new Evaluation(trainingSet);            model.buildClassifier(trainingSet);    validation.evaluateModel(model, testingSet);            return validation;}//simpleClassify().public static double calculateAccuracy(FastVector predictions) {    double correct = 0;    for (int i = 0; i < predictions.size(); i++) {        NominalPrediction np = (NominalPrediction) predictions.elementAt(i);        if (np.predicted() == np.actual()) {            correct++;        }    }    return 100 * correct / predictions.size();}//calculateAccuracy().public static Instances[][] crossValidationSplit(Instances data, int numberOfFolds) {    Instances[][] split = new Instances[2][numberOfFolds];    for (int i = 0; i < numberOfFolds; i++) {        split[0][i] = data.trainCV(numberOfFolds, i);        split[1][i] = data.testCV(numberOfFolds, i);    }            return split;}//corssValidationSplit().}//class.

====================

输出结果:

Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 14.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 14.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 12.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0===================================================================Classifier: class weka.classifiers.rules.PART : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 14.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 14.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 9.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 13.0, Wrong: 0.0===================================================================Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 1.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 1.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 12.0, Wrong: 0.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 14.0, Wrong: 0.0===================================================================Classifier: class weka.classifiers.rules.OneR : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 14.0, Wrong: 1.0Classifier: class weka.classifiers.rules.OneR : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 12.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 14.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 14.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 14.0, Wrong: 0.0===================================================================Classifier: class weka.classifiers.trees.DecisionStump : Correct: 15.0, Wrong: 1.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 15.0, Wrong: 1.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 15.0, Wrong: 2.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 5.0, Wrong: 2.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 15.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 0.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 5.0, Wrong: 0.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 0.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 0.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 0.0===================================================================

回答:

在打印行中

System.out.println("Classifier: "+models[j].getClass()+" : Correct: "+predictions[j][i][0]+", Wrong: "+predictions[i][j][1]);      

以下部分

Wrong: "+predictions[i][j][1]);

应该改为

Wrong: "+predictions[j][i][1]);

你把 ji 调换了位置。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注