为什么最佳优先搜索的Python实现未能给出正确输出

我尝试在8数码问题上实现了一个最佳优先搜索算法。但是无论我使用什么矩阵,都得到与A*代码相同的路径。另外,有人能帮我打印出每个矩阵下的启发式值吗?我在输出中只得到了“1”。

最佳优先搜索代码-

from copy import deepcopyfrom collections import dequeclass Node:    def __init__(self, state=None, parent=None, cost=0, depth=0, children=[]):        self.state = state        self.parent = parent        self.cost = cost        self.depth = depth        self.children = children    def is_goal(self, goal_state):        return is_goal_state(self.state, goal_state)    def expand(self):        new_states = operator(self.state)        self.children = []        for state in new_states:            self.children.append(Node(state, self, self.cost + 1, self.depth + 1))    def parents(self):        current_node = self        while current_node.parent:            yield current_node.parent            current_node = current_node.parent    def gn(self):        costs = self.cost        for parent in self.parents():            costs += parent.cost        return costsdef is_goal_state(state, goal_state):    for i in range(len(state)):        for j in range(len(state)):            if state[i][j] != goal_state[i][j]:                return False    return Truedef operator(state):    states = []    zero_i = None    zero_j = None    for i in range(len(state)):        for j in range(len(state)):            if state[i][j] == 0:                zero_i = i                zero_j = j                break    def add_swap(i, j):        new_state = deepcopy(state)        new_state[i][j], new_state[zero_i][zero_j] = new_state[zero_i][zero_j], new_state[i][j]        states.append(new_state)    if zero_i != 0:        add_swap(zero_i - 1, zero_j)    if zero_j != 0:        add_swap(zero_i, zero_j - 1)    if zero_i != len(state) - 1:        add_swap(zero_i + 1, zero_j)    if zero_j != len(state) - 1:        add_swap(zero_i, zero_j + 1)    return statesR = int(input("Enter the number of rows:")) C = int(input("Enter the number of columns:")) # Initialize matrix inital = [] print("Enter the entries rowwise:") # For user input for i in range(R):          # A for loop for row entries     a =[]     for j in range(C):      # A for loop for column entries          a.append(int(input()))     inital.append(a) # For printing the matrix for i in range(R):     for j in range(C):         print(inital[i][j], end = " ")     print() R = int(input("Enter the number of rows:")) C = int(input("Enter the number of columns:")) # Initialize matrix final = [] print("Enter the entries rowwise:") # For user input for i in range(R):          # A for loop for row entries     a =[]     for j in range(C):      # A for loop for column entries          a.append(int(input()))     final.append(a) # For printing the matrix for i in range(R):     for j in range(C):         print(final[i][j], end = " ")     print() def search(state, goal_state):    def gn(node):        return node.gn()    tiles_places = []    for i in range(len(goal_state)):        for j in range(len(goal_state)):            heapq.heappush(tiles_places, (goal_state[i][j], (i, j)))    def hn(node):        cost = 0        for i in range(len(node.state)):            for j in range(len(node.state)):                tile_i, tile_j = tiles_places[node.state[i][j]][1]                if i != tile_i or j != tile_j:                    cost += abs(tile_i - i) + abs(tile_j - j)        return cost    def fn(node):        return 1    return bfs_search(state, goal_state, fn)def bfs_search(state, goal_state, fn):    queue = []    entrance = 0    node = Node(state)    while not node.is_goal(goal_state):        node.expand()        for child in node.children:            #print(child)            #print(fn(child))            queue_item = (fn(child), entrance, child)            heapq.heappush(queue, queue_item)            entrance += 1        node = heapq.heappop(queue)[2]    output = []    output.append(node.state)    for parent in node.parents():        output.append(parent.state)    output.reverse()    return (output,fn)l , n = search(inital,final)for i in l:    for j in  i:        print(j)    print(n(Node(i)))    print("\n")

这是输出结果-

Enter the number of columns:3Enter the entries rowwise:2831647052 8 3 1 6 4 7 0 5 Enter the number of rows:3Enter the number of columns:3Enter the entries rowwise:8032641758 0 3 2 6 4 1 7 5 [2, 8, 3][1, 6, 4][7, 0, 5]1[2, 8, 3][1, 6, 4][0, 7, 5]1[2, 8, 3][0, 6, 4][1, 7, 5]1[0, 8, 3][2, 6, 4][1, 7, 5]1[8, 0, 3][2, 6, 4][1, 7, 5]1

虽然我达到了正确的目标节点并显示了所有中间步骤,但我无法理解它是基于什么启发式考虑的。


回答:

一般来说,A*和贪婪最佳优先搜索不保证得到相同的解。如果使用可采纳的启发式,A*总是会找到最优解,而这对于最佳优先搜索来说并不成立。

有关A*和最佳优先搜索会给出不同结果的示例,请参见这个回答

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注