我想比较adaboost
和决策树。为了证明这个概念,我将adaboost
中的估计器数量设置为1
,使用默认的决策树分类器,期望得到与简单决策树相同的结果。
我确实得到了预测测试标签的相同准确率。然而,adaboost
的拟合时间要低得多,而测试时间略高。Adaboost
似乎使用了与DecisionTreeClassifier
相同的默认设置,否则准确率不会完全相同。
谁能解释一下这是为什么?
代码
from sklearn.ensemble import AdaBoostClassifierfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.metrics import accuracy_score print("creating classifier")clf = AdaBoostClassifier(n_estimators = 1)clf2 = DecisionTreeClassifier()print("starting to fit")time0 = time()clf.fit(features_train,labels_train) #fit adaboostfitting_time = time() - time0print("time for fitting adaboost was", fitting_time)time0 = time()clf2.fit(features_train,labels_train) #fit dtreefitting_time = time() - time0print("time for fitting dtree was", fitting_time)time1 = time()pred = clf.predict(features_test) #test adaboosttest_time = time() - time1print("time for testing adaboost was", test_time)time1 = time()pred = clf2.predict(features_test) #test dtreetest_time = time() - time1print("time for testing dtree was", test_time)accuracy_ada = accuracy_score(pred, labels_test) #acc adaprint("accuracy for adaboost is", accuracy_ada)accuracy_dt = accuracy_score(pred, labels_test) #acc dtreeprint("accuracy for dtree is", accuracy_dt)
输出
('time for fitting adaboost was', 3.8290421962738037)('time for fitting dtree was', 85.19442415237427)('time for testing adaboost was', 0.1834099292755127)('time for testing dtree was', 0.056527137756347656)('accuracy for adaboost is', 0.99089874857792948)('accuracy for dtree is', 0.99089874857792948)
回答:
我在IPython中尝试重复你的实验,但我没有看到这么大的差异:
from sklearn.ensemble import AdaBoostClassifierfrom sklearn.tree import DecisionTreeClassifierimport numpy as npx = np.random.randn(3785,16000)y = (x[:,0]>0.).astype(np.float) clf = AdaBoostClassifier(n_estimators = 1)clf2 = DecisionTreeClassifier()%timeit clf.fit(x,y)1 loop, best of 3: 5.56 s per loop%timeit clf2.fit(x,y)1 loop, best of 3: 5.51 s per loop
尝试使用性能分析器,或者先重复实验。