我在编写代码时,无论尝试什么方法,都会收到支持的目标类型为:(‘binary’, ‘multiclass’)。但得到的是’continuous’的错误。你能看出我的代码中有什么问题吗?
df = pd.read_csv('drain.csv')values = df.valuesseed = 7numpy.random.seed(seed)X = df.iloc[:,:2]Y = df.iloc[:,2:]def create_model():# create model model = Sequential() model.add(Dense(12, input_dim=8, activation='relu')) model.add(Dense(8, activation='relu')) model.add(Dense(1, activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return modelmodel = KerasClassifier(build_fn=create_model, epochs=10, batch_size=10, verbose=0)# evaluate using 10-fold cross validationkfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)results = cross_val_score(model, X, Y, cv=kfold)print(results.mean())
回答:
你需要将你的Y变量转换为二进制类型,如下所示:https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py
# convert class vectors to binary class matricesy_train = keras.utils.to_categorical(y_train, num_classes)y_test = keras.utils.to_categorical(y_test, num_classes)
然后
history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))
看起来你忘记了转换为分类数据的步骤。